• Title/Summary/Keyword: Base Fluids

Search Result 183, Processing Time 0.034 seconds

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM (초음속 유동장에서 기저 유동의 Detached Eddy Simulation)

  • Shin, J.R.;Won, S.H.;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

Numerical Study for Base Drag Reduction Using Boattail Shape Afterbodies for Launcher Vehicles in the Supersonic Turbulent Flow (초음속 난류 유동장에 놓인 보트테일 형상 발사체 후방동체 기저 항력 감소에 대한 수치적 연구)

  • Park N. E.;Kim J. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.43-46
    • /
    • 2004
  • Numerical analysis for pressure drag on boattail afterbodies have been studied by Mach number, boattail angle and length ratio of body diameter and base diameter using CFD-FASTRAN that the commercial external flow CFD code. The numerical results have been compared with the experimental data that have been shown pressure drag reduction and supersonic turbulent flow characteristics for boattail afterbodies. And the prediction equation tot boattail base drag has been made by the numerical results about Mach number and boattail configuration parameters.

  • PDF

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipment (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • 권완섭;문우식;윤한희;김경웅
    • Tribology and Lubricants
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required propertied and performances were discussed.

The use of fluid inclusions to constrain P-T-X conditions of formation of Eonyang amethyst (언양 자수정 형성 환경의 압력-온도-성분에 대한 유체포유물의 이용)

  • K. H. Yang
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Eonyang amethyst deposits are thought to be spatially and temporally associated with the biotite granite of the Kyeongsang Basin. The examined euhedral quartz crystals in cavities in the aplite intruded biotite granite are colored-zoned from white at the base to amethystine at the tops. Three types of primary Inclusions were observed and three is representing each types are constructed to constrain the trapping conditions and fluid evolution involved during the formation of the amethyst. The intersection of the isochore representing the early fluid inclusions with solidus temperature of the host granite indicates initial quartz formation at about $600^{\circ}C$ and 1.0-1.5 kbars . Intermediate quartz formation, associated with the high-salinity inclusions, occurred at somewhat lower temperatures ($400^{circ}c$) and pressures of about 1 kbar. The amethystine quartz formed from $H_2O$-$CO_2$-NaCl fluids at temperatures between 280-$400^{circ}c$ and pressures of about 1 kbar. Early quartz is interpreted to have formed from fluids that either exsolved from or were in equilibrium with the granite at near solidus conditions, whereas the amethystine quartz apparently grew from fluids of at least partial sedimentary origin.

  • PDF

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

BLOCKAGE EFFECT ON FLOWS AROUND A ROTATIONALLY OSCILLATING CIRCULAR CYLINDER (회전 진동하는 원형실린더 주위 유동의 폐쇄효과 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.33-38
    • /
    • 2008
  • For study on the unsteady blockage effect, flows around a rotationally oscillating circular cylinder with relatively low forcing frequency in closed test-section wind tunnels have been numerically investigated by solving compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with the Roe's flux-difference splitting and an implicit time-integration method coupled with dual time-step sub-iteration. The computed results of the oscillating cylinder in the test section showed that the fluctuations of lift and drag are augmented by the blockage effects. The drag further increases because of low base pressure. The pressure on the test section wall shows the harmonics having the oscillating and the shedding frequencies contained in the blockage effect.

Deterioration of High Viscosity Index Hydraulic Fluids During Use in Construction Equipments

  • Kwon, W.S.;Moon, W.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.353-354
    • /
    • 2002
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion. For the extension of hydraulic fluid life. it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Hydraulic oil with the viscosity index of 140 and improved thermal stability consists of group III base oil, showed the possibility of extension of fluid life.

  • PDF

NUMERICAL STUDY OF NANOFLUIDS FORCED CONVECTION IN CIRCULAR TUBES (원형관내 나노유체의 강제대류에 관한 수치적 연구)

  • Choi, Hoon Ki;Yoo, Geun Jong
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2014
  • In this paper, hydraulic & thermal developing and fully developed laminar forced convection flow of a water-$Al_2O_3$ nanofluid in a circular horizontal tube with uniform heat flux at the wall, are investigated numerically. A single phase model employed with temperature independent properties. The thermal entrance length is presented in this paper. The variations of the convective heat transfer coefficient and shear stress are shown in the entrance region and fully developed region along different nanoparticles concentration and Reynolds numbers. Convective heat transfer coefficient for nanofluids is larger than that of the base fluid. It is shown that heat transfer is enhanced and shear stress is increased as the particle volume concentration increases. The heat transfer improves, as Reynolds number increases.

NUMERICAL ANALYSIS OF TRANSPORT PHENOMENA IN POLYMER ELECTROLYTE FUEL CELLS (고체고분자형 연료전지 내의 이동현상에 대한 수치해석)

  • Park, C.G.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • A three dimensional numerical model to predict the flow and transport of mixtures and also the electrochemical reactions in polymer electrolyte membrane (PEM) fuel cells is developed. The numerical computation is base on vorticity- velocity method. Governing equations for the flow and transport of mixtures are coupled with the equations for electrochemical reactions and are solved simultaneously including production and condensation of vapor. Fuel cell performance predicted by this calculation is compared with the experimental results and resonable agreements are achieved.