• Title/Summary/Keyword: Base Fluids

Search Result 183, Processing Time 0.02 seconds

Silver Ores and Fluid Inclusions of the Cheolam Silver Deposits (철암은광상(鐵岩銀鑛床)의 광석(鑛石)과 유체포유물(流體包有物))

  • Park, Hee-In;Woo, Young-Kyun;Bae, Young Boo
    • Economic and Environmental Geology
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 1987
  • The Cheolam silver deposits are emplaced along the fractures in breccia dike and the Hongjesa granite. Breccia dike contains fragments of late Cretaceous acidic volcanic rocks and other fragments of various rocks distributed in the mine area. Therefore it is presumed that the mineralization was taken place in later than late Cretaceous time. Mineral paragenesis is complicated by multiple episodes of fracturing. Six distinct depositional stages can be recognized: stage I, deposition of base metal sulfides; stage II, deposition of base metal sulfides and silver minerals; stage III, deposition of carbonates; stage IV, deposition of silver minerals and base metal sulfides; stage V, deposition of silver minerals; stage VI, deposition of barren quartz. Silver minerals from the deposits are native silver, acanthite, pyrargyrite, argentian tetrahedrite, stephanite, polybasite, pearceite, allargentum, antimonial silver and electrum. Fluid inclusion studies ware carried out for stage I, II, IV and VI quartz and stage III calcite. Homogenization temperatures for each stage are as follows: stage I, from $225^{\circ}$ to $360^{\circ}C$; stage II, from $145^{\circ}$ to $220^{\circ}C$; stage III, from $175^{\circ}$ to $240^{\circ}C$; stage IV, from $130^{\circ}$ to $185^{\circ}C$; stage VI, from $120^{\circ}$ to $145^{\circ}C$. Salinities of ore fluids were in the range of 4 and 10 wt.% equivalent NaCl over stage I and stage VI. Ore mineralogical data of each stage indicate that temperatures are within the range of homogenization temperature of fluid inclusions and sulfur fugacities declined steadily from $10^{-9.7}atm$. to $10^{-18.7}atm$. through stage I into stage V.

  • PDF

Copper Mineralization at Haman-Gunbuk Mining District, Kyeongnam Area (경남(慶南) 함안(咸安)-군북지역(郡北地域)의 동광화작용(銅鑛化作用)에 관(關)한 연구(硏究))

  • Park, Hee-In;Choi, Suck-Won;Chang, Ho Wan;Chae, Dong-Hyeon
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.107-124
    • /
    • 1985
  • More than fifty copper veins are emplaced around late Cretaceous granitoid stock in Haman-Gunbuk district, southernmost part of Korea. These veins cut both late Cretaceous granitoids and hornfels of Jindong formation which is intruded by the granitoids. The paragenesis of veins is nearly the same, consisting of (1) an early vein stage in which most iron oxide minerals, tourmaline and other silitcate minerals were deposited, (2) a calcite and quartz with base·metal sulfide stage and (3) late vein lets of barren calcite stage. Fluid inclusion studies reveal highly systematic trends of salinity and temperature during mineralization. Ore fluids of early vein stage were complex NaCl-KCl rich brines. Salinities of polyphase inclusions in quartz and scapolite in thie stage reached up to 72 wt.% and gradually decreased to 10.5wt. % in closing stage. Homogenization temperatures of inclusions in the beginning of this stage were up to $490^{\circ}C$ and then declined steadly to $290^{\circ}C$ in the late stage. Salinities of fluid inclusions in quartz and calcite of base·metal sulfide stage were 37.4~5.7wt. % and homogenization temperatures range from $373^{\circ}C$ to $170^{\circ}C$. Intermittent boiling of early vein fluid is indicated by fluid inclusions in quartz. Potassic alteration of granodiorite adjacent to early vein seems to be related to early saline vein fluid. Fluid inclusion data of base-metal sulfide stage of this area reveal nearly the same range as those of Koseong copper mining district about 30km apart from this area.

  • PDF

Numerical Study of Forced Convection Nanofluid in Double Pipe (이중관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Lim, Yun-Seung;Choi, Hoon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.147-156
    • /
    • 2019
  • Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.

CFD ANALYSIS OF HEAT TRANSFER PERFORMANCE OF A REFRIGERATOR CONDENSER (CFD 해석을 통한 냉장고용 응축기 전열성능 연구)

  • Yoo, S.S.;Hwang, D.Y.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.303-309
    • /
    • 2009
  • In this study, the heat transfer and flow field of condenser used on Kim-chi refrigerator is analysed with numerical method. Main objective is to present the base data for designing new condenser model with improvement of heat transfer performance. For CFD analysis, a commercial code, STAR-CCM+ was used. The water was used for the inner working fluid and the air was used for the outer fluid. The condenser type used in this study is a flat plate fin-and-tube heat exchanger. As factors for performance analysis, the effect of condenser geometry and air velocity was investigated. As a result, it has been observed that there is a suitable fin pitch with which heat transfer performance of condenser is maximized.

  • PDF

INTERNAL FLOWS IN AIR PUMP OF ROBOT CLEANER (로봇청소기용 에어 펌프 내부 유동 해석)

  • Kim, J.W.;Seok, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.227-231
    • /
    • 2009
  • Traditional vacuum cleaner adoptsa highly rotating centrifugal impeller for generating suction region at lower pressure. The rotational speed is very high at 35,000 to 40,000 rpm and accessory structure such as a circular brush at the base plate of the cleaning devices is equipped for gathering dusts. Highly rotating impeller is effective for low pressure generation but causes noise problems. Recently, the unwanted noise is removed by installation of air-pump, instead of a centrifugal impeller, and the internal flows of the modified system are estimated in numerical and experimental approach, respectively.

  • PDF

A Study on the Prediction of the Aerodynamic Characteristics of a Launch Vehicle Using CFD (전산유동해석에 의한 발사체 공력 특성 예측에 관한 연구)

  • Kim Younghoon;Ok Honam;Kim Insun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.17-22
    • /
    • 2004
  • A space launch vehicle departs the ground in a low speed, soon reaches a transonic and a supersonic speed, and then flies in a hypersonic speed into the space. Therefore, the design of a launch vehicle should include the prediction of aerodynamic characteristics for all speed regimes, ranging from subsonic to hypersonic speed. Generally, Empirical and analytical methods and wind tunnel tests are used for the prediction of aerodynamic characteristics. This research presents considerable factors for aerodynamic analysis of a launch vehicle using CFD. This investigation was conducted to determine effects of wake over the base section on the aerodynamic characteristics of a launch vehicle and also performed to determine effects of the sting which exist to support wind tunnel test model.

  • PDF

Aerodynamic Analysis on Wing-Nacelle of Tiltrotor UAV (틸트로터 무인기의 날개-나셀 공력해석)

  • Choi Seong Wook;Kim Cheol Wan;Kim Jai Moo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.27-34
    • /
    • 2004
  • In the Smart UAV Development Program, one of the 21c Frontier R&D Program, the tiltrotor has been studied as the concept of vehicle. The tiltrortor aircraft take-off and land in rotary wing mode like conventional helicopter, and cruise in fixed wing mode like conventional propeller airplane. For the conversion of the flight mode from helicopter to airplane, the nacelle located at wing tip has to be tilted from about 90 degrees of helicopter mode to about 0 degree of airplane mode. In this study, the aerodynamic characteristics of the wing with tilted nacelle is investigated using computation fluid dynamics technique. In order to feature out aerodynamic interferences between wing and nacelle, the flow calculations are conducted for the wing and the nacelle separately and for the combined geometry of wing and nacelle, respectively. Through this computations, not only the aerodynamic data-base for the wing-nacelle is constructed but also its contribution to the configuration design of the wing-nacelle is anticipated.

  • PDF

Natural Convection Heat Transfer from a Heated Fine Wire in Nanofluids (나노유체에 잠긴 가는 열선 주위의 자연대류 열전달)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.807-813
    • /
    • 2007
  • Recent research on nanofluids under forced convection experiment shows that there is little relationship between convective heat transfer and thermal conductivity increase of nanofluids. This kind of new findings are totally different from the traditional theory of nanofluids, which says that the higher thermal conductivity is a prerequisite for convective heat transfer enhancement. To elucidate this controversial issue in a very comprehensible manner, simple natural convection experiment has been carried out for the water- and oil-based nanofluids. ($water-Al_2O_3$, transformer $oil-Al_2O_3$) Present research shows that there exists strong dependence between natural convection performance and thermal conductivity increase of nanofluids.

Oxidation Stability of PAO Oils Determined by Differential Scanning Calorimetry

  • Shim, Joosup;Cho, Wonoh;Chung, Keunwo
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 1996
  • The suitability of a pressure differential scanning calorimetry (PDSC) in monitoring the quality of synthetic base fluids has been investigated using polyalphaolefin (PAO) oils as an example. Induction period meassured at 170, 180 and 19$0^{\circ}C$, and 3.53 MPa oxygen pressure was applied to characterize their oxidation stability. The PDSC method has proven to be simple and repeatable and requires only small sample size for testing. More importantly, it can be applied in differentiating the oxidation performance quality of PAO oils and is versatile enough for use in studying kinetic aspects of PAO oil oxidation which include the effect of temperature and antioxidant concentration. Additionally, the method appears to correlate well with a rotary bomb oxidation test (RBOT).

Wear Properties of Vegetable Oils Formulated with Some Antiwear Additives (내마모첨가제가 첨가된 식물성유의 마모특성연구)

  • 최웅수;안병길;정용진;권오관
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.6-11
    • /
    • 1996
  • There has been a growing concern for the use of mineral oil based lubricants because of the worldwide interest in environmental issues. This has prompted the use of vegetable oils as more environmentally acceptable base fluids. In view of this, four-ball wear test was carried out to investigate the tribological behavior of selected vegetable oils blended with ZDDP, TCP and DBP under high speed and temperate conditions. Of the additive evaluated, the new additive, DBP has provided antiwear performance superior to the two other additives more commonly used. This superior performance by DBP is probably caused by different wear mechanism. This wear mechanism has been evidenced by the surface analysis of worn balls conducted using optical microscope and EDAX.