• Title/Summary/Keyword: Base Fluid

Search Result 420, Processing Time 0.027 seconds

Vibration Characteristics of Immersed Column with Soft Base (연약지점을 갖는 유체에 잠긴 기둥의 진동 특성)

  • Oh Sang-Jin;Mo Jeong-Man
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.697-702
    • /
    • 2006
  • This paper deals with the free vibrations of immersed columns with soft base. The support condition of the column is represented by using a translational spring and a rotational spring. The eccentricity and rotatory inertia of the concentrated mass at the top are taken into account. In the governing equation for the free vibration of column, the density of immersed part was modified to account for the added fluid mass. The governing differential equations are solved numerically using the corresponding boundary conditions. Numerical results are presented to show the effects on the natural frequencies of non-dimensional system parameters: the mass density ratio of fluid to column, the ratio of fluid depth to span length, the ratio of tip mass to total column mass, the dimensionless mass moment of inertia, the eccentricity, the translation spring parameter, and the rotational spring parameter.

  • PDF

A comparison of the Effects of Intravenous Fluid Warming and Skin Surface Warming on Peri-operative Body Temperature and Acid Base Balance of Elderly Patients with Abdominal Surgery (수액가온요법과 피부가온요법이 개복술 환자의 저체온 예방에 미치는 효과 비교)

  • Park, Hyo-Sun;Yoon, Hae-Sang
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.7
    • /
    • pp.1061-1072
    • /
    • 2007
  • Purpose: The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Method: Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group(30 elderly patients) was warmed through an IV line by an Animec set to $37^{\circ}C$. The skin surface warming(SSW) group(30 elderly patients) was warmed by a circulating-water blanket set to $38^{\circ}C$ under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. Results: SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of $HCO_3{^-}$(p= .000) and preventing base excess(p= .000) respectively. However, there was no difference in pH between the SSW and IFW(p= .401) groups. Conclusion: We conclude that skin surface warming is more effective in preventing hypothermia, and $HCO_3{^-}$ and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

Gas and Solute Compositions of Fluid Inclusions in Quartz from Some Base-metal ore Deposits, South Korea (남한의 주용 금속광상산 석영내의 유체포유물의 가스성분과 용존성분의 화학조성)

  • Kim, Gyu-Han;Jeong, Hae-Ran
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.421-434
    • /
    • 1999
  • Gas and chemical compositions of fluid inclusions in quartz some of Au-Ag, Pb-Zn-Cu and W-Mo mineral deposits in South Kores were analyzed to interpret the sources of ore fluid and the depositional condition of ore minerals in base-metal ore deposits. Fluid inclusions in quartz from the gold and silver mines are characterized by $CO_2$ rich fluids which have a wide range in $CH_4 \;and\; CO_2$ contents ($CH_4/CO_2$=0.001-0.225). The $CO_2$ rich but $CH_4$-poor nature of the fluid reflects the high fo2 condition during the mineral precipitation. The C2H6 is detected in hydrothermal quartz vines in metasedimentary rocks from the Jeonjoo-il, Youngbokari and Taechang mines. The $CH_4 /CO_2$ rations in W-Mo bearing quartz veins range from 0.005 to 0.214, which is similar with those in Au-Ag mines. However, skarn formation stage. Fluid inclusions, A relatively good correlation between Na and Cl contentrations reflects varible salinity in the fluid inclusion, it is suggested that the chemistry of promary magmatic hydrothermal fluids has changed during post-magmatic alteration and/or wall rock alteration processes. The content of gas compositions also depends on the kinds of country rocks, supporting above conclusion.

  • PDF

Numerical Analysis on the Performance Improvement of Plate Heat Exchanger by Applying to CuO Nanofluid (CuO 나노유체를 적용한 판형열교환기 성능에 대한 수치해석적 연구)

  • Ham, Jeonggyun;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • In this study, a numerical study was conducted to evaluate the performance improvement when CuO nanofluid was used in the plate heat exchanger. As a result, the heat transfer amount is increased by 5.45% when 2 vol% CuO nanofluid is used. The influence on the CuO nanofluid on the performance of heat exchanger is decreased by increasing the flow rate of working fluid. In addition, the overall heat transfer coefficient using 2 vol% CuO nanofluid decreased compared to the base fluid. However, the pressure drop and the consumption of the pump power is increased as the concentration of CuO nanofluid increased because the increase of the viscosity. These are increased up to 15.4% compared to those of the base fluid. Moreover, the performance index of CuO nanofluid is decreased by 12.6% compared to that of the base fluid.

Stability and Thermo-physical Properties of Nanofluids and Its Applications (나노유체의 분산안정성 및 열물성치와 그 응용에 관한 연구)

  • Hwang, Y.;Lee, K.;Kim, K.;Lee, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.474-478
    • /
    • 2008
  • It has been shown that a nanofluid consisting of nanoparticles dispersed in base fluid has much higher effective thermal conductivity than pure fluid. In this study, four kinds of nanofluids such as multiwalled carbon nanotube (MWCNT) in water, CuO in water, SiO2in water, and CuO in ethylene glycol, are produced. Their thermal conductivities are measured by a transient hot-wire method. The thermal conductivity of water-based MWCNT nanofluid is shown to be increased by up to 11.3% at a volume fraction of 0.01. The measured thermal conductivities of MWCNT nanofluids are higher than those calculated with Hamilton-Crosser's model due to neglecting solid-liquid interaction at the interface. The results show that the thermal conductivity enhancement of nanofluids depends on the thermal conductivities of both particles and the base fluid. Stability of nanofluids is estimated by UV-vis spectrum analysis. Stability of nanofluid depends on the type of base fluid and the suspended particles. Also it can be improved in addition of a surfactant.

  • PDF

A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipments (VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유)

  • Kwon W.S.;MOON W.S.;Yoon H.H.;Kim K.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.152-157
    • /
    • 2003
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required properties and performances were discussed.

  • PDF

A Study on Thermal Conductivity Characteristics of Nanofluids (나노유체 열전도도 특성 연구)

  • Hwang, Yu-Jin;Park, Jae-Hong;Kim, Hong-Suk;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.162-167
    • /
    • 2006
  • Nanofluid is a kind of new engineering material consisting of nanoparticles dispersed in base fluid. Nanofluids could have various applications such as magnetic fluids, heat exchanger working fluids, lubricants, drug delivery and so on in present study, various nanoparticles, such as MWCNT (Multi-walled Carbon Nanotube), fullerene, copper oxide, and silicon dioxide are used to produce nanofluids. As base fluids, DI-water, ethylene glycol, oil, and silicon oil are used. To investigate the thermo-physical properties of nanofluids, thermal conductivity and kinematic viscosity are measured. Stability estimation of nanofluid is conducted with UV-vis spectrophoto-meter. In this study, the high pressure homogenizer is the most effective method to produce nanofluid with the prepared nanoparticle and base fluid. Excellently stable nanofluids are produced with the magnetron sputtering system. Thermal conductivity of nanofluid increases with increasing particle volume fraction except water-based fullerene nanofluid which has lower thermal conductivity than base fluid due to its lower thermal conductivity, 0.4 W/mK. The experimental results can't be predicted by Jang and Choi model.

  • PDF

A Study on Ferro Fluid Dynamic Bearing Spindel Characteristics by High Frequency Vibration Ssystem

  • Miwa, M.;Harita, H.;Nishigami, T.;Kaneko, R.;Unozawa, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.283-284
    • /
    • 2002
  • Ball bearings (BB) are generally used in spindle of‘ disk drives at present, but they have been known that BB generate high frequency vibration. Fluid dynamic bearings (FDB) having high-rotational accuracy and small vibration characteristics have been developed as next generation spindles. Especially. a ferro fluid bearing (FFB) spindle has the advantage to prevent leakage and dispersion of lubricating oil using a ferro seal. In this study, we measured damping characteristics and frequency characteristics of these bearing spindles using a high-frequency vibration base. High frequency excitation was added to these bearing spindles mounted on the vibration base, and we proved that FFB and FDB spindles have effective damping.

  • PDF

A Numerical Study on the Effect of the Tail Wing of a Projectile on the Base Drag (포탄의 꼬리날개가 기저항력에 미치는 영향에 대한 해석적 연구)

  • Noh, Seonghyeon;Kim, Jongrok;Bang, Jaewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.625-636
    • /
    • 2019
  • Recently, research on projectiles with wings for precision guidance is actively underway. In this study, we analyzed how the tail fins attached to the projectile affect the base drag. Aerodynamic analysis was performed with RANS(Reynolds Averaged Navier-Stokes) equations using FLUENT, a commercial CFD(Computational Fluid Dynamics) code. Through the aerodynamic analysis, the base drag characteristics of the projectile by parameters (number, length, thickness, position, shape of tail fin) were investigated. The results of this study are expected to be applicable to aerodynamic design of tail fins mounted on projectiles.

Passive control system for seismic protection of a multi-tower cable-stayed bridge

  • Geng, Fangfang;Ding, Youliang;Song, Jianyong;Li, Wanheng;Li, Aiqun
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.495-514
    • /
    • 2014
  • The performance of passive control system for the seismic protection of a multi-tower cable-stayed bridge with the application of partially longitudinal constraint system is investigated. The seismic responses of the Jiashao Bridge, a six-tower cable-stayed bridge using the partially longitudinal constraint system are studied under real earthquake ground motions. The effects of the passive control devices including the viscous fluid dampers and elastic cables on the seismic responses of the bridge are examined by taking different values of parameters of the devices. Further, the optimization design principle of passive control system using viscous fluid dampers is presented to determine the optimized parameters of the viscous fluid dampers. The results of the investigations show that the control objective of the multi-tower cable-stayed bridge with the partially longitudinal constraint system is to reduce the base shears and moments of bridge towers longitudinally restricted with the bridge deck. The viscous fluid dampers are found to be more effective than elastic cables in controlling the seismic responses. The optimized parameters for the viscous fluid dampers are determined following the principle that the peak displacement at the end of bridge deck reaches to the maximum value, which can yield maximum reductions in the base shears and moments of bridge towers longitudinally restricted with the bridge deck, with slight increases in the base shears and moments of bridge towers longitudinally unrestricted with the bridge deck.