• Title/Summary/Keyword: Basalts

Search Result 76, Processing Time 0.026 seconds

Petrochemical Characteristics of the Duibaejae Volcanic Rocks from Goseong, Gangwon-do, Korea (강원도 고성 뒤배재 화산암의 암석화학적 특성)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.2
    • /
    • pp.109-119
    • /
    • 2013
  • Duibaejae basalts from Goseong, Gangwon-do, are divided into the lower basalt and the upper basalt depending on the properties, such as occurrence, mineral compositions, and major and trace compositions of the basalts. The lower basalts have characteristics of agglomerate rocks as well as contain, crustal and mantle xenoliths, and olivine, pyroxene, and plagioclase xenocrysts. The upper basalts with columnar joints contain relatively more mantle xenolith and olivine xenocryst than the lower basalts. The major and trace element compositions suggest that the composition of the upper basalts is close to primary magma composition. Enrichment and depletion patterns of the trace and the rare-earth elements of the lower basalts are similar to those of the upper basalts, whereas the lower basalts are more LREE enriched than the upper basalts. The source magmas of the lower and upper basalts from Duibaejae volcanic edifice were generated from about 0.8-1.2% and 3.7-4.0% batch melting of garnet peridotite, respectively. The abundance of granite xenolith, and plagioclase and quartz xenocrysts with reaction rim indicates that the lower basalts, compared with upper basalts, might have been assimilated with the crustal materials during ascending to surface.

Geochemistry and Petrogenesis of Pliocene Alkaline Volcanic Rocks of Dok Island, Korea

  • Wee, Soo Meen
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.447-459
    • /
    • 2015
  • Dok island comprises Pliocene volcanic products such as a series of volcanoclastic rocks and lavas ranging in composition from alkali basalts, and trachyandesites to trachytes. Compositional variation of the basaltic rocks can be attributed to fractional crystallization of olivine, clinopyroxene, plagioclase, and magnetite. Chemical variations among the trachyandesites are caused by fractionation of clinopyroxene, plagioclase, and magnetite with minor amphibole, while trachytes are controlled mainly by feldspar fractionation. Incompatible element abundance ratios and chondrite normalized LREE/HREE ratios (e.g., (La/Yb)c: 24.8 to 32.8 for basalts, 15.6 to 31.2 for trachyandesites) suggest that the origins of the basalts and trachyandesites involve both different degrees of partial melting and subsequent fractional crystallization processes. Trace element ratios of the basalts from Dok island are characterized by high Ba/Nb, La/Nb, Ba/Th and Th/U and isotopic ratios (Tasumoto and Nakamura, 1991) that are similar to the EM 1 type of oceanic island basalts such as Gough and Tristan da Cunha basalts.

Axial Seamount Basalts in P3 Segment of Phoenix Ridge, Drake Passage, Antarctica: K-Ar Age Determination and Geochemistry (남극 드레이크 해협 피닉스 해령 P3구역 축부 해저현무암: K-Ar 연대측정과 지구화학)

  • Lee, Jong-Ik;Hur, Soon-Do;Lee, Mi-Jung;Kim, Kyu-Jung;Nagao, Keisuke
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.107-118
    • /
    • 2003
  • The axial seamount basalts in the P3 segment of the Phoenix Ridge were obtained from dredging and the K-Ar age determination and whole-rock geochemical analyses have been done for understanding their origin. The K-Ar ages for PRS basalts sampled from 1,000m below sea level are 2.6-2.2 Ma and those for PR3 basalts from 800m are 1.6-1.5 Ma. The younger ages towards the crest of the seamount indicate that this submarine volcano has been grown by central eruptions. The youngest age of about 1.5 Ma for PR3 basalts corresponds to the final eruption period of this volcano. The seamount basalts contain small amounts of normative quartz and olivine. They have transitional geochemical nature between alkaline- and subalkaline-series basalts. Trace and rare earth elements compositions of the seamount basalts are very similar to those of ocean island basalts (OIB), and indicate that this seamount has been formed by a hotspot activity, not in association with a seafloor spreading. The melting degree from the source has decreased with time, and finally the volcanic activity has stopped when the basaltic magma reached mild alkaline composition.

Estimation of Hoek-Brown Constant mi for the Basaltic Intact Rocks in Jeju Island (제주도 현무암의 Hoek-Brown 계수 mi의 추정)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.21-31
    • /
    • 2020
  • In this study, Hoek-Brown constants (mi) were calculated through nonlinear regression analyses using the results of the triaxial compression tests for the basaltic intact rocks in Jeju Island. The relationships of the mi with the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS) and UCS/BTS of the Jeju basalts were investigated, respectively. In addition, a method that can be used in determining Hoek-Brown failure envelopes including the tensile and compressive failures of the Jeju basalts has been proposed. As results, the mi values had no clear correlations with the UCS, BTS and UCS/BTS of the Jeju basalts, but there were two strong correlations between UCS and mi/UCS, and between BTS and mi/BTS of the Jeju basalts. In addition, it was found that the tensile strengths calculated by the Hoek-Brown failure criterion underestimate the tensile strengths of the Jeju basalts through the relationship between the mi and UCS/BTS of the Jeju basalts. The method presented in this study is considered to be useful in determining the Hoek-Brown failure envelope for the tensile and compressive failures of the Jeju basalts.

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF

Petrology of the Basalts in the Seongsan-Ilchulbong area, Jeju Island (제주도 성산일출봉 일대 현무암에 대한 암석학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Jeong, Eun-Ju
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.324-342
    • /
    • 2007
  • This study reports petrography and geochemical characteristics of the basalt lava flows in Seongsan-Ilchulbong area, the easternpart of Jeju island, Korea, to understand the evolutionary processes of magma. Basalt lavas are classified into the Pyoseon-ri basalt and the Seongsan-ri basalt. The Pyoseon-ri basalt is dark-gray colored with many vescicles, and mainly consists of olivine, feldspar and rarely of clinopyroxene as phenocrysts. The Seongsan-ri basalt is largely aphanitic basalt and bright-gray colored, divided into two lava-flow units: lower lava flow (B1) and upper lava flow (B2) by the intercalated yellowish lapillistone and paleosol. The lavas plotted into sub-alkaline tholeiitic basalt and alkaline basalt series. The tholeiitic basalts have characteristically higher $SiO_2,\;FeO^T$, and CaO contents, but lower $TiO_2,\;K_2O,\;P_2O_5$ and other incompatible elements compared to the alkali basalts. The tholeiitic basalts have higher $SiO_2$ to the same MgO contents than the alkalic basalts. The contents of Ni, Cr, and MgO show a strong positive correlation, which indicates that low-MgO phases like plagioclase and titanomagnetite were important during the differentiation of magma. The contents of incompatible elements against that of Th show a strong positive correlation. The chondrite-nomalized REE patterns of tholeiitic and alkalic basalts are subparallel each other. LREEs contents of the former are lower than, but HREEs contents are similar to the latter. They both are similar to their K/Ba ratios. The primitive-mantle normalized spider diagram demonstrates that the contents of Ba and Th of all basaltic magma are enriched, and yet Cr, Ni are depleted. The tholeiitic and alkalic basalts may be originated from a different degree of the partial melting of the same mantle material source, and one shows a higher degree of the partial melting than the other.

Mantle Source Lithologies of Late Cenozoic Basaltic Rocks and Two Varieties of Enriched Mantle in the Korean Peninsula (한반도 신생대 후기 현무암의 근원 맨틀 암상과 두 종류의 부화 맨틀)

  • Choi, Sung Hi
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.183-197
    • /
    • 2022
  • Geochemical data, including Sr-Nd-Pb-Mg-Zn isotopes, reported on the late Cenozoic intraplate basaltic rocks in the Korean Peninsula (Mt. Baekdu, Jeongok, Baengnyeong Island, Pyeongtaek, Asan, Ganseong, Ulleung Island, Dok Island, and Jeju Island) are summarized to constrain their mantle source lithologies, and the nature of mantle end-members required. In the Sr-Nd isotope correlation diagram, Jeju basalts plot in the field of EM2-type oceanic island basalts (OIB), while the other basalts fall in the EM1-type OIB field. In Pb-Pb isotope space, Jeju basalts show a mixing array between Indian MORB and EM2 component, whereas the other basalts display an array with EM1 component. The Korean basalts were derived from a hybrid source of garnet lherzolite and recycled stagnant slab materials (eclogite/pyroxenite, pelagic sediments, carbonates) in the mantle transition zone. The EM1 component could be ancient (~2.0 Ga) K-hollandite-bearing pelagic sediments that were isolated for a long period in the mantle transition zone due to their neutral buoyancy. The EM2 component might have been relatively young (probably Pacific slab) and recently recycled clay-rich pelagic sediments. Eclogite and carbonates are unlikely to account for the EM components, but they are common in the mantle source of the Korean basalts.

Petrology of the basalt in the Udo monogenetic volcano, Jeju Island (제주도 우도 단성화산의 현무암에 대한 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo;Hyeon Gyeong Bong;Lee Moon Won;Gil Young-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.45-60
    • /
    • 2005
  • This study was intended to elucidate the petrography and geochemical characteristics of the Someori Basalt in the Udo monogenetic volcano, eastern Jeju Island. The Someori basalts consist of plagioclase, olivine, orthopyroxene, clinopyroxene and ilmenite. The Someori basalts are plotted into subalkali rock series on the TAS diagram, and belong to tholeiitic basalts in the diagram of alkali index against to Al₂O₃ contents. The basalts belong to tholeiitic rock series, having normative quartz (less than 3.9%) + hypersthene + diopside.

New Approach on the Extinction of Spreading at the Phoenix Ridge, Antarctica (남극 피닉스 해령 확장작용 소멸시기에 대한 새로운 고찰)

  • Choe Won Hie;Lee Jong Ik;Lee Mi Jung;Hur Soon Do;Jin Yaung Keun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • K-Ar ages have been determined for the submarine basalts dredged from the P2 and P3 segments of the Phoenix Ridge, Drake Passage, Antarctica, for better understanding on the extinction of seafloor spreading. At the P3 segment, the K-Ar ages of the rifted ridge basalts are 3.5-6.4 Ma, and those for the axial seamount basalts are 1.5-3.1 Ma. The K-Ar ages for the basalts at the rifted ridge and axial central high in the P2 segment are 2.1 and 1.4-1.9 Ma, respectively. We suggest that the extinction of seafloor spreading at the P3 and P2 segments occurred at 3.3 and 2.0 Ma, respectively, on the basis of ridge structure and formation time of basalts. This result favors a stepwise extinction model rather than a simultaneous one on the extinction of the Phoenix Ridge.

Physical and Mechanical Characteristics of Basalts in Northwestern and Southeastern Jeju Island (제주도 북서부 및 남동부 현무암의 물리적 & 역학적 특성)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2015
  • Volcanic rocks in Jeju Island have vesicular structure caused by various environmental factors, and indicate the differences in geological and mechanical characteristics from region to region. In addition, the bedrock of Jeju Island shows stratified structure, that is, soft layers composed of pyroclastic rocks or cavities are irregularly developed between the basalt layers by several times of volcanic activity. In this study, various physical tests and unconfined compressive strength test were conducted for intact rocks sampled in northwestern onshore and offshore of Jeju Island. The results obtained in the tests were compared with the physical and mechanical characteristics of intact rocks sampled in southeastern offshore of Jeju Island. As a results, it was confirmed that the physical and mechanical characteristics of basalts sampled in northwestern Jeju Island were similar to those of basalts sampled in southeastern offshore of Jeju Island. In addition, it was possible to estimate approximate design parameters from the correlation of mechanical properties with physical properties of basalts in Jeju Island.