• Title/Summary/Keyword: Barrier rib

Search Result 94, Processing Time 0.028 seconds

Aqueous alkali-developable Photosensitive Barrier Rib Paste for PDP and Photolithographic Process

  • Park, Lee-Soon;Jeong, Seung-Won;Kim, Soon-Hak;Tae, Heung-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.177-179
    • /
    • 2000
  • Barrier rib for the plasma display panel (PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving poly(MMA-co-MAA) binder polymer in butyl carbitol(BC) solvent at 15 wt% concentration. To this solution were added a mixture of functional monomers , Irgacure 651 photoinitiator, and barrier rib power and then the whole mixture was dispersed in the three roll mill for 2 hour. The effect of component and concentration of photosensitive barrier rib paste was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to 110-120 ${\mu}m$ height and 80-90 ${\mu}m$ width.

  • PDF

Photosensitive Barrier Rib Paste for PDP and Photolithographic Process (Plasma Display Panel용 감광성 격벽 재료 및 Photolithography 공정 성질)

  • Park, Lee Soon;Jeong, Seung Won;Oh, Hyun Shik;Kim, Soon Hak;Song, Sang Moo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1114-1118
    • /
    • 1999
  • Barrier rib for the plasma display panel(PDP) was made by photolithographic process utilizing photosensitive barrier rib paste. The barrier rib paste was prepared by first dissolving ethylcellulose(binder polymer) in butyl carbitol(BC)/butyl carbitol acetate(BCA) =30/70 wt % mixture solvent at 15 wt % concentration. To this solution a mixture of functional monomers consisted of tripropyleneglycol diacrylate/ pentaerythritol triacrylate = 50/50 wt %, Irgacur 651 photoinitiator, and barrier rib powder were added and then the whole mixture was mixed in the three roll mill for 2 hr. The effect of component and concentration of photosensitive barrier paste on the photolithographic process was studied. After optimization of the paste formulation and photolithographic process, barrier rib could be obtained with good resolution up to $100{\mu}m$ height.

  • PDF

Patterning Barrier Ribs of PDP by Transparent Soft Mold

  • Paek, Sin-Hye;Choi, Hyung-Suk;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A new PDP barrier rib formation technique was investigated utilizing transparent soft maid made of silicon resin. Transparent soft mold was fabricated by pouring a silicone resin into the base mold made with photosensitive glass. The photosensitive barrier rib paste was coated on the glass substrate and dried in a 90 $^{\circ}C$ convection oven for 20min. The transparent soft mold was pressed on top of the semi-dry barrier rib layer and then irradiated with a UV lamp to a total dose of $900{\sim}1000mJ/cm^2$ The soft maid was then removed from the pressed barrier rib by winding up and fine pattern of barrier rib was obtained. The photosensitive barrier rib paste makes the demolding easy due to reduced interfacial forces and shrinking of paste materials.

  • PDF

Photolithographic Method of Patterning Barrier Ribs for PDP by Green Sheet

  • Park, Lee-Soon;Jang, Dong-Gyu;Hur, Young-June;Lee, Sung-Ho;Kim, Duck-Gon;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1225-1228
    • /
    • 2005
  • Barrier ribs in the plasma display panel(PDP) function to maintain the discharge space between the glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, and barrier rib powder of which surface was treated with fumed silica particles. Study on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation and photolithographic process, it was found that photolithographic patterning of barrier ribs with photosensitive barrier rib green sheet could be used in the fabrication of high resolution PDP.

  • PDF

Photosensitive Barrier Rib Paste and Materials and Process

  • Park, Lee-Soon;Kim, Soon-Hak;Jang, Dong-Gyu;Kim, Duck-Gon;Hur, Young-June;Tawfik, Ayman
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.823-827
    • /
    • 2005
  • Barrier ribs in the plasma display panel (PDP) function to maintain the discharge space between the glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. Barrier ribs could be formed by screen-printing, sand blasting, etching, and photolithographic process. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, and barrier rib powder of which surface was treated with fumed silica particles. Studies on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation and photolithographic process, it was applied to the photosensitive barrier rib green sheet and was found that photolithographic patterning of barrier ribs could be formed with good resolution up to $110{\mu}m$ height and $60{\mu}m$ width after sintering.

  • PDF

Barrier Rib Patterning Technology for Cost Effective High Resolution PDP

  • Park, Lee-Soon;Paek, Sin-Hye;Yun, Sang-Won;Choi, Hyung-Suk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.989-993
    • /
    • 2002
  • Barrier ribs in the color plasma display panel(PDP) function to maintain the discharge space between to glass plates as well as to prevent optical crosstalk. Patterning of barrier ribs is one of unique processes for making PDP. In this work photosensitive barrier rib pastes were prepared by incorporating binder polymer, solvent, functional monomers photoinitiator, mid barrier rib powder. Study on the function of materials for the barrier rib paste were undertaken. After optimization of paste formulation, both photolithographic and transparent soft molding method resulted in fine pattern of barrier ribs with high aspect ratio.

  • PDF

The relationship between addressing time and dielectric layer, barrier rib hight (AC PDP의 addressing time과 유전체 및 Barrier Rib 높이와의 상관관계)

  • Park, J.T.;Park, C.S.;Song, K.D.;Park, C.H.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1824-1826
    • /
    • 2000
  • Up to date, the dual scanning method has been adopted to decrease address-ing period in AC PDP. In this case, addressing period can be reduced, but the driving circuit cost should be increased. In this study, to increase addressing speed we have studied the relationship between addressing speed and cell structure. That is to say, we varied the thickness of dielectric layer on the front glass, the thickness of white back and the height of barrier rib on the rear glass. So, we found that the addressing time was decreased 4% with decreasing 5um thickness of dielectric layer on the front glass and 2um thickness of white back on the rear glass. Also in case of decreasing the height of barrier rib, addressing time was decreased about 4% per 10um.

  • PDF

Effect of Barrier Rib Height Variation on the Luminous Characteristics of AC PDP

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.91-94
    • /
    • 2003
  • We studied the effect of barrier rib height variation using ray-optics code incorporated with three-dimensional plasma simulation to analyze the effects of cell geometry for varying pressure conditions. The optimal barrier rib height decreased as the Xe partial pressure increased which resulted in due to the formation of local, strong sheath under high Xe partial pressure condition.

  • PDF

New Barrier Rib Forming Method for PDP Fabrication

  • Kim, I.T.;Cho, C.R.;Koo, B.J.;Lee, S.H.;Kong, S.S.;Kim, W.B.;Mun, J.D.;Hwang, K.T.;Kim, J.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.351-355
    • /
    • 2003
  • In this paper, a new barrier rib forming method of embossed barrier rib (EBR) formation process for the PDP rear panel was introduced. The process is mainly composed of green sheet fabrication, lamination of the green sheet on the rear glass panel having data electrodes, and roll embossing followed by firing. The EBR process has two advantages over the conventional barrier rib forming methods. One is the process requires less equipment investment than the conventional methods by about 20% of the current rear panel fabrication equipment investment owing to the simplified fabrication process. The other advantage is its reduced rear panel manufacturing cost by eliminating the time consuming and complicated processes and waste of materials in the conventional methods. In this study, general procedure of EBR fabrication process is described and the characteristics of prototype PDP using EBR panel are discussed.

  • PDF

Characteristics of Outgas from Heated Barrier Rib for POP (PDP용 격벽재의 승온 탈가스 특성)

  • 김선호;주정훈;이석영;이강욱;오상진
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Plasma Display Panel is a display device emitting fluorescent light from gas discharge between a front and a rear panel sealed together. Front and rear panel have multitude of film layers and barrier ribs in the rear panel has the largest area so releasing various gases and affecting light emitting characteristics and lifetime. The remaining gases in a barrier rib were studied by thermal desorption analysis up to $400^{\circ}C$ and main gases were $H_2$ $H_2$O, CO. During sustaining at $300^{\circ}C$, the outgassing rates from other gases were decreased but$ H_2$ kept constantly increasing until 1 hour, which can be originated from the dissociation of organics remained in the inside of barrier rib material. In $H_2$O, two distinct peaks were observed: desorption from physically adsorbed one at $l00^{\circ}C$ and from chemically adsorbed one $400^{\circ}C$. The result can be utilized in interpretation of electronic and optical characteristics and evacuation process control of PDP