• Title/Summary/Keyword: Barrier energy

Search Result 835, Processing Time 0.032 seconds

A Numerical Analysis of Flame Liftoff Height and Structure with the Variation of Velocity Profiles at the Nozzle Exit (연료노즐 출구에서의 속도 형상에 따른 부상화염 높이 및 화염구조에 관한 수치해석 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.21-28
    • /
    • 2008
  • A numerical analysis is achieved to elucidate the behavior of lifted flames and characteristics of flow near flame zone according to the exit velocity of triple flame, Poiseuille and uniform distribution. For the cases of Poiseuille and uniform nozzle exit velocity, we reviewed previous results with the present numerical results and investigated characteristics of the flame structure near the flame zone comparing with liftoff height generalized by momentum flux. In addition, a close inquiry into the combustion flow characteristics near flame zone was made with the characteristics of velocity, pressure, temperature and chemical reaction. From nozzle to flame zone, center line velocity profile traced well with the velocity profile of typical cold jet flow, but very near the flame zone, this study examined phenomenon that flow velocity decreases very quickly before the flame zone and then increases very quickly after the flame zone. Because flame zone acts as a barrier at the flow region which is before the flame zone and accelerate the flow velocity when it pass through the flame zone. This phenomenon was not clarified previous cold jet flow.

  • PDF

The Characteristices of the 4,4',4'-trifluoro-triazine as a hole Blocking Material in Electroluminescent Devices (전계발광 소자에서 정공 차단 물질로서의 4,4',4'-trifluoro-triazine의 특성)

  • Shin, Ji-Won;Shin, Dong-Muyng;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.120-125
    • /
    • 2000
  • The tfTZ(4,4',4''-trifluoro-triazine) was used as a hole blocking material for the electroluminescent devices(ELDs) in this study. In general, the holes are outnumbered the electrons in hole transport and emitting layers because the hole transport is more efficient in most organic ELDs. The hole blocking layer are expected to control the excess holes to increase the recombination of holes and electrons and to decrease current density. The former study using the 2,4,6-triphenyl-1,3,5-triazine(TTA) as hole blocking layer showed that the TTA did not form stable films with vapor deposition technique. The tfTZ can generate stable evaporated films, moreover the fluorine group can lower the highest occupied molecular orbital(HOMO) level, which produces the energy barrier for the holes. The tfTZ has high electron affinities according to the data by the Cyclic-Voltammety(CV) method, which is developed for the measurement of HOMO and lowest occupied molecular orbital(LUMO) level of organic thin films. The lowered HOMO level is made the tfTZ to be applied for a hole blocking layer in ELDs. We fabricated multilayer ELDs with a structure of ITO/hole blocking layer(HBL)/hole transporting layer(HTL)/emitting layer/electrode. The hole blocking properties of this devices is confirmed from the lowered current density values compared with that without hole blocking layer.

Verification of SPACE Code with MSGTR-PAFS Accident Experiment (증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증)

  • Nam, Kyung Ho;Kim, Tae Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Field emission properties of boron-doped diamond film (보론-도핑된 다이아몬드 박막의 전계방출 특성)

  • 강은아;최병구;노승정
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • Deposition conditions of diamond thin films were optimized using hot-filament chemical vapor deposition (HFCVD). Boron-doped diamond thin films with varying boron densities were then fabricated using B4C solid pellets. Current-voltage responses and field emission currents were measured to test the characteristics of field emission display (FED). With the increase of boron doping, the crystal size of diamond decreased slightly, but its quality was not changed significantly in case of small doping. The I-V characterization was performed for Al/diamond/p-Si, and the current of doped diamond film was increased $10^4\sim10^5$ times as compared with that of undoped film. In the field emission properties, the electrons were emitted with low electric field with the increase of doping, while the emission current increased. The onset-field of electron emission was 15.5 V/$\mu\textrm{m}$ for 2 pellets, 13.6 V/$\mu\textrm{m}$ for 3 pellets and 11.1 V/$\mu\textrm{m}$ for 4 pellets. With the incorporation of boron, the slope of Fowler-Nordheim graph was decreased, revealing that the electron emission behavior was improved with the decrease of the effective barrier energy.

  • PDF

A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers (용액공정 기반 SnO2와 TiO2를 이중 전자수송층으로 적용한 양자점 전계 발광소자의 특성비교 연구)

  • Shin, Seungchul;Kim, Suhyeon;Jang, Seunghun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.69-72
    • /
    • 2020
  • In this study, the inverted structured electroluminescence (EL) devices were fabricated with double electron transport layers (ETLs). The conduction band minimum (CBM) of TiO2 NPs is lower than SnO2 NPs. Therefore, it is expected that inserting TiO2 NPs between the SnO2 layer and the emission layer (EML) will reduce the energy barrier and transport electrons smoothly. The quantum dot light emitting diodes (QLEDs) with double ETLs showed the enhanced emission characteristics than those with only SnO2 layer.

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.

Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells (고체 고분자 연료전지용 비백금계 산소환원촉매 조성 조사 및 분석)

  • Kwon, Kyung-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • The prohibitively high cost of Pt catalyst might be the biggest barrier for the commercialization of proton exchange membrane fuel cells (PEMFC) of which wide application is expected. Worldwide research efforts for the development of alternative to Pt oxygen reduction reaction (ORR) catalyst are made recently. One of the important considerations in the catalyst development is durability issue as well as economic aspect. From this point of view, platinum group metals (PGM) except Pt can be a candidate for replacing Pt catalyst because the material properties and the catalytic activity of PGM are expected to be similar to Pt. In contrast to Ir, Rh and Os to which not so much attention has been paid as an ORR catalyst, Pd that is most similar to Pt in terms of material properties and catalytic activity and Ru that is in the form of chalcogenide have been studied intensively. Activity comparison between non-Pt and Pt oxygen reduction catalysts by half cell test using RDE (rotating disk electrode) or PEMFC MEA (membrane electrode assembly) operation indicates that Pd-based catalysts show the most similar activity to Pt. In this paper we analyze the composition of PGM ORR catalyst in literature to promote the development of non-Pt ORR catalyst.

A Study on the Relationship of Skin Surface pH with Nutrient Intake or Dietary Pattern in Healthy Adults (건강한 성인에서 피부 산도와 영양소 섭취 및 식사패턴과의 상관성 연구)

  • Kang, Hye-Jin;Kim, Kun-Pyo;Cho, Yunhi
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • As an indicator of skin health, acidified skin surface pH ranging from 5 to 7 is crucial for maintaining skin barrier. In this study, we evaluated the relationship between skin pH and dietary pattern (DP) as well as nutrient or food intake in 48 healthy middle aged adults. Skin pH was measured in the skin surface of the inner arm, and blood lipid profile was analyzed. Dietary intake data were obtained using 1 day 24 hour recall method, and DP was extracted using factor analysis. Results revealed that skin pH ranged from 5.15 to 6.88 in all subjects. There was no significant difference in skin pH between males and females. When subjects were grouped by tertile of skin pH, the food intake of fruit, and the nutrient intake of omega 6 fatty acid, potassium, vitamin A, vitamin C, ${\beta}$-carotene, and riboflavin in the first tertile group with skin pH ranging from 5.15 to 5.68 were significantly higher than in the third tertile group with skin pH ranging from 6.26 to 6.88. There was no difference in blood lipid profile between the first and the third tertile group. Among 5 DP extracted by factor analysis, DP5 characterized by a high intake of nuts and fruits as well as a low intake of beverages and alcohol was inversely correlated with skin pH after adjusting for gender and age. DP5 was positively correlated with nutrient intake of carbohydrate, fiber, potassium, iron, vitamin A, vitamin C, ${\beta}$-carotene, thiamine, and riboflavin but negatively correlated with sodium after adjusting for gender, age, smoking, and energy intake. Therefore, acidified skin pH could be maintained by these DP and nutrients.

SIMS Study on the Diffusion of Al in Si and Si QD Layer by Heat Treatment

  • Jang, Jong Shik;Kang, Hee Jae;Kim, An Soon;Baek, Hyun Jeong;Kim, Tae Woon;Hong, Songwoung;Kim, Kyung Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.188.1-188.1
    • /
    • 2014
  • Aluminum is widely used as a material for electrode on silicon based devices. Especially, aluminum films are used as backside and front-side electrodes in silicon quantum dot (QD) solar cells. In this point, the diffusion of aluminum is very important for the enhancement of power conversion efficiency by improvement of contact property. Aluminum was deposited on a Si (100) wafer and a Si QD layer by ion beam sputter system with a DC ion gun. The Si QD layer was fabricated by $1100^{\circ}C$ annealing of the $SiO_2/SiO_1$ multilayer film grown by ion beam sputtering deposition. Cs ion beam with a low energy and a grazing incidence angle was used in SIMS depth profiling analysis to obtain high depth resolution. Diffusion behavior of aluminum in the Al/Si and Al/Si QD interfaces was investigated by secondary ion mass spectrometry (SIMS) as a function of heat treatment temperature. It was found that aluminum is diffused into Si substrate at $450^{\circ}C$. In this presentation, the effect of heat treatment temperature and Si nitride diffusion barrier on the diffusion of Al will be discussed.

  • PDF

Bone-like Apatite Formation on Ultrafine-Structure in Modified Electrolytic Solution

  • Jang, Jae-Myung;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.155-155
    • /
    • 2017
  • Surface modifications are commonly utilized to adjust the properties of the titanium and its alloy surface to the specific needs of the medical applications, but there are disadvantages such as poor osteoconductive properties and low adhesion of bone cell to implant surface. In order to improve these disadvantages, changes in surface properties have an important effect on osseointegration during implantation. In this paper we applied new technological method for improving a unique surface modification using the characteristic of an electrolytic Solution. Thus, in the electrolyte containing NaF in Na2SO4, TiO2 nanoporous was uniformly formed, and HAp nanoparticles were electrodeposited around the TiO2 nanopores, but in the electrolyte containing NH4F in (NH4)H2PO4, the coarse protrusions including HAp nano particles were regularly deposited onto the TiO2 barrier layer. The surface characteristics and the distributed elements and have been investigated by EDS analysis, and ultra-fine structure of surface are carried out using FE-SEM. To investigate the behavior of the anion, the analysis of chemical states was performed by XPS, and the narrow spectrums for Ti2P, Ca 2p, and P 2p seems to be almost similar depending on the characteristics of the electrolyte solution respectively. In addition, Ca 2p spectrum could be resolved into two peaks for Ca 2p3/2 and 2p1/2 at 347.4 and 351.3 eV, which are related to hydroxyapatite. And, the P peak can also be deconvoluted into two peaks for P1/2 and P3/2 levels with binding energy 134.2 and 133.4 eV, respectively. From the result of soaking test, the apatite morphologys were well-formed onto the modified surface according to the different conditions.

  • PDF