• 제목/요약/키워드: Barrier coating

검색결과 356건 처리시간 0.03초

열처리 시간에 따른 Ni-P/Cr 이중 도금 층의 계면 거동에 관한 연구 (Effect of Heat Treatment on Interface Behavior in Ni-P/Cr Double Layer)

  • 최명희;박영배;이병호;변응선;이규환
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.260-268
    • /
    • 2015
  • The thermal barrier coating (TBC) for inner wall of liquid-fuel rocket combustor consists of NiCrAlY as bonding layer and $ZrO_2$ as a top layer. In most case, the plasma spray coating is used for TBC process and this process has inherent possibility of cracking due to large difference in thermal expansion coefficients among bonding layer, top layer and metal substrate. In this paper, we suggest crack-free TBC process by using a precise electrodeposition technique. Electrodeposited Ni-P/Cr double layer has similar thermal expansion coefficient to the Cu alloy substrate resulting in superior thermal barrier performance and high temperature oxidation resistance. We studied the effects of phosphorous concentrations (2.12 wt%, 6.97 wt%, and 10.53 wt%) on the annealing behavior ($750^{\circ}C$) of Ni-P samples and Cr double layered electrodeposits. Annealing temperature was simulated by combustion test condition. Also, we conducted SEM/EDS and XRD analysis for Ni-P/Cr samples. The results showed that the band layers between Ni-P and Cr are Ni and Cr, and has no formed with heat treatment. These band layers were solid solution of Cr and Ni which is formed by interdiffusion of both alloy elements. In addition, the P was not found in it. The thickness of band layer was increased with increasing annealing time. We expected that the band layer can improve the adhesion between Cr and Ni-P.

서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가 (Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray)

  • 이원준;오윤석;이성민;김형태;임대순;김성원
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

열차폐코팅의 비파괴적 손상 평가를 위한 고감도 와전류 센서 설계 (Designing a Highly Sensitive Eddy Current Sensor for Evaluating Damage on Thermal Barrier Coating)

  • 김종민;이슬기;김학준;송성진;석창성;이영제
    • 비파괴검사학회지
    • /
    • 제36권3호
    • /
    • pp.202-210
    • /
    • 2016
  • 열차폐코팅은 극한의 열환경에서 사용되는 기계요소를 고온으로부터 보호하기 위하여 널리 이용하는 코팅으로, 관련 산업의 경제적 이윤과 사용자 안전에 관련한 중요한 기술이다. 따라서 이런 열차폐코팅의 비파괴적 손상 평가는 그 중요성이 높이 평가되어 왔으나, 코팅 파쇄의 원인이 되는 내부의 미세한 조성 변화를 감지하기 위한 기술적 난제를 안고 있는 연구 주제이다. 본 논문은 열차폐코팅의 비파괴적 손상 평가를 위한 유한요소해석 기반 고감도 와전류 센서 설계 과정을 소개하고, 설계한 센서를 제작하여 진행한 성능 평가를 통해 설계 과정을 검증하였다. 와전류 센서의 성능을 예측하기 위하여 유한요소해석을 수행한 결과, 열차폐코팅의 손상 정도에 따른 센서의 임피던스가 증가와, 마그네틱 쉴드를 적용하였을 때 자속집속에 의한 검출능 향상을 관찰할 수 있었다. 또한 실제 실험결과와 비교를 통해 유한요소해석 결과를 검증하였다.

열차폐 코팅의 두께에 따른 추력 조절기의 열전달 특성 연구 (Heat Transfer Characteristics of Thruster Controller According to Thickness of Thermal Barrier Coating)

  • 장한나;이지훈;곽재수;조진연;김재훈;고준복;허준영
    • 항공우주시스템공학회지
    • /
    • 제11권4호
    • /
    • pp.15-21
    • /
    • 2017
  • 본 연구에서는 가변 추력기 3D 모델에 대해 상용 CFD 코드를 이용하여 고온 고압 환경에서의 추력 조절기 표면 열전달 계수를 예측하였다. 추력 조절기 표면에 열차폐코팅(TBC)을 모델링하였고, TBC 코팅의 두께가 추력조절기 내부 온도 분포에 미치는 영향을 연구하였다. TBC층의 두께는 $100{\mu}m{\sim}500{\mu}m$로 변화시켰다. 해석 결과, TBC층의 두께가 증가함에 따라 추력 조절기 표면과 내부 온도는 감소하는 경향을 보였다.

종이 기반과 플라스틱 기반 보건마스크 패키징의 환경영향 비교 (Comparison of Environmental Evaluation for Paper and Plastic Based Mask Packaging)

  • 강동호;고유진;오상훈;추고현;장지수;이준혁;심진기
    • 한국포장학회지
    • /
    • 제30권1호
    • /
    • pp.73-83
    • /
    • 2024
  • In this study, environmental evaluation of high barrier coated paper (coating layer/paper) packaging is conducted in comparison with conventional aluminum laminated (PET/VMPET/LLDPE) plastic packaging. The target product for this packaging is a KF94 mask, which requires a high barrier of water and oxygen to maintain the filtration ability of the mask filter. The functional unit of this study is 10,000 mask packaging materials based on a material capable of blocking oxygen (<1 g/m2day) and moisture (<3 g/m2day) for the preservation of KF94 masks. In order to understand the results easily, paper-based mask packaging system divided into 6 stages (pulp, pulping & paper making, calendaring & coating, printing, packing and waste management), while plastic-based mask packaging consists of 5 stages (material production, processing, printing, packing, waste management) In case of paper-based mask packaging, most contributing stage is calendaring & coating, resulting from heat and electricity production. On the other hand, plastic-based mask packaging is contributed more than 30% by material production, specifically due to linear low density polyethylene and purified terephthalic acid production. The comparison results show that global warming potential of paper-based mask packaging has 32% lower than that of plastic-based mask packaging. Most of other impact indicators revealed in similar trend.

Effect of Soy Protein Isolate Coating on Meat Quality of Pork Fresh Cut during Refrigerated Storage

  • Shon, Jin-Han;Kim, Jin-Ho;Eo, Ji-Hyun;Choi, Yong-Hwa
    • Journal of Applied Biological Chemistry
    • /
    • 제55권1호
    • /
    • pp.27-34
    • /
    • 2012
  • Soy protein isolate (SPI)-based edible coating, with and without carboxymethyl cellulose (CMC), were used to reduce oxidative degradation of cut pork stored at $4^{\circ}C$ for 5 days. The SPI coating reduced (p<0.05) thiobarbituric acid-reactive substances (TBARS) and peroxide value (PV), compared with controls. The inhibition of TBARS and PV for SPI-coated porks with and without CMC, compared with the control was 19.1 and 23.9, and 25.7 and 37.7%, respectively. The SPI coating prevented loss of $L^*$ and $a^*$ values of porks compared to the control. The ability of the SPI coating to provide a moisture barrier for the porks was reduced (p<0.05). The SPI-coated porks with and without CMC reduced moisture loss by 37.3 and 44.6%, respectively, over the control. However, SPI coating of porks did not inhibit the growth of either total plate counts or L. monocytogenes. The result revealed that SPI can effectively be used as a natural antioxidative coating to extend quality and shelf life of pork.

LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구 (A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process)

  • 강현욱;권현옥;송요승
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Flexible Ultra-high Gas Barrier Substrate for Organic Electronics

  • Yan, Min;Erlat, Ahmet Gun;Zhao, Ri-An;Scherer, Brian;Jones, Cheryl;Smith, David J.;Mcconnelee, Paul A.;Feist, Thomas;Duggal, Anil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.633-636
    • /
    • 2006
  • GE has developed a plastic substrate technology comprised of a superior high-heat polycarbonate substrate film and a unique transparent coating package that provides the ultrahigh barrier to moisture and oxygen, and chemical resistance to solvents used in device fabrication. This contribution will update recent progresses made at GEFlexible Ultra-high Gas Barrier Substrate for Organic Electronics on ultra-high barrier coated plastic substrate, both in batch mode and in roll-to-roll mode

  • PDF

Barix Thin Film Encapsulation of OLED's on Flexible and Rigid Glass substrates; high temperature performance and manufacturing aspects.

  • Chu, X.;Moro, L.;Rutherford, N.;Visser, R.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1699-1702
    • /
    • 2007
  • We will discuss encapsulation of OLEDs on both flexible and rigid glass substrates. Accelerated testing at 6CC/90RH and 85C/85RH is compared and acceleration factors for OLED and Calcium test samples are discussed.We have tested the stability and performance of our barrier coating to much higher temperatures: up to 140 C. Water Vapor Transmission rates at temperatures from 60 to 140 C are presented. Rates and methods for low cost manufacturing on a large scale are analysed

  • PDF

세라믹코팅재의 잔류응력에 대한 연구 (A Study on the Residual Stresses of Ceramic Coating)

  • 한지원
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.19-23
    • /
    • 2007
  • The aim of this study was to determine residual stresses in thermal barrier coatings(TBCs) by isothermal heating. Specimens were heated at the range of $1000{\sim}1600^{\circ}C$. A finite element method was used to determine the residual stresses. Finite element coupled heat transfer and elastic-plastic thermal stress analysis using a general purpose commercial FEM software ABAQUS. I obtained the stresses were not affected below the temperature of $1400^{\circ}C$ but affected over that of temperature.