• Title/Summary/Keyword: Barrel temperature

Search Result 129, Processing Time 0.024 seconds

Numerical Analysis of the Non-Isothermal Heat Transfer in Solids Conveying Zone of a Single Screw Extruder (단축압출기 고체수송부에서의 비등온 열전달 현상에 관한 수치 해석)

  • Ahn Young-Cheol
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.549-556
    • /
    • 2005
  • Effects of the dimensionless variables on the heat transport phenomena in the extrusion process of a single screw extruder have been studied numerically. Based on the understanding of the solids conveying related to the geometrical structure and characteristics of the screw, the heat balance equation for the solids conveying zone was established and normalized. The finite volume method and power-law scheme were applied to derive a discretized equation and the equation was solved using the alternating direction iterative method with relaxation. Effects of the dimensionless parameters, Biot and Peclet numbers, that define the heat transfer characteristics of the solids conveying zone have been investigated with respect to the temperature of the feeding zone and the length of the solids conveying zone. As the Biot number is increased, the heat loss by cooling dominates to decrease the temperature of the barrel but it has little effects on the temperature of the solids bed and the length of the solids conveying zone. On the other hand, if the Peclet number is increased, the convection term dominates to decrease the temperature of the solids bed and it results in an increase in the length of the solids conveying zone.

Use of Dye Deposition in Cows' Excised Genital Tract to Evaluate Inseminators' and Refreshment Training to Refreshment Training to Improve Their Skill

  • Mohammed S.;Mohammad S. H.;Mohhammad A. R. S.;Khan A.H.M.S.I.
    • Journal of Embryo Transfer
    • /
    • v.20 no.2
    • /
    • pp.157-162
    • /
    • 2005
  • To find out the possible inefficiencies of artificial inseminators at rectovaginal insemination in cows, inseminators' skill were evaluated by controlling the semen thawing procedure adopted and by using the technique of dye deposition in the genital tract of slaughtered cows. This was followed by refreshment training for the inseminators. Thirty seven artificial insemination technicians regularly working in the government, cooperative and NGO (Non Government Organization) artificial insemination programmes at different places of Bangladesh were included in the study. Individual technicians were asked to thaw a semen straw and deposit dye in the genital tract of slaughtered cows following the procedures they would have adopted in their actual practices of insemination. The time and water temperature adopted by technicians were recorded and genital tract after sham artificial insemination was dissected to determine the site of dye deposition. Then, the inseminators took part in a three days intensive training program. The training program was ended up with the same tests for thawing frozen semen straw and dye deposition in the genital tract of slaughtered cows. At pre training evaluation, only $25\%\;and\;72\%\;(n=36)$ inseminators adopted co..ect thawing time and temperature, respectively. At post training evaluation, all inseminators thawed semen straws for proper time and temperature. At pretraining evaluation, $21(57\%),\;11 (30\%)\;and\;3(8\%)$ inseminators deposited dye at the body of uterus, in the vagina or in cervix, and into the horn of uterus, respectively. In $2(5\%)$ cases dye did not pass into the genital tract, instead back flowed through the space between the barrel of insemination gun and sheath. At post training evaluation, all inseminators successfully deposited dye in the body of uterus. Frequent evaluation of inseminators' skill and subsequent training would help improvement of the artificial insemination technicians' skill.

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Effects of Feed Moisture Content on Enzymatic Hydrolysis of Corn Starch in Twin-Screw Extruder and Saccharification of the Dried Extrudates

  • Solihin, Budiasih W.;Kim, Mi-Hwan;Im, Byung-Soon;Cha, Jae-Yoon;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.381-385
    • /
    • 2007
  • The objective of this experiment was to study the influence of feed moisture content on the degree of enzymatic hydrolysis of com starch in a twin screw extruder and the saccharification yield of the dried extrudate. The feed moisture content was set at 25, 30, and 35% and ${\alpha}$-amylase solution was directly injected into the feed section at a barrel temperature of $95^{\circ}C$ and screw speed of 250 rpm. Amyloglucosidase was used for the saccharification of the dried extrudate at a concentration of 0.055%(w/w). Expansion ratio and swelling factor of extrudates decreased with increasing the feed moisture content. Addition of ${\alpha}$-amylase during extrusion process raised reducing sugar content of extrudates which also increased with the feed moisture content. The saccharification yield of dried extrudate was higher for the extrudate with lower feed moisture content.

Investigation of Hydrodynamic Mass Characteristic for Flow Mixing Header Assembly in SMART (SMART 유동혼합헤더집합체의 동수력 질량 특성 고찰)

  • Lee, Gyu Mahn;Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2020
  • In SMART, the flow mixing header assembly (FMHA) is used to mix the coolant flowing into the reactor core to maintain a uniform temperature. The FMHA is designed to have enough stiffness so the resonance with reactor internal structures does not occurs during the pipe break and the seismic accidents. Since the gap between the FMHA and the core support barrel assembly is very narrow compared with the diameter of FMHA, the hydrodynamic mass effect acting on the FMHA is not negligible. Therefore the hydrodynamic mass characteristics on the FMHA are investigated to consider the fluid and structure interaction effects. The result of modal analysis for the dry and underwater conditions, the natural frequency of primary vibration mode for the horizontal direction is reduced from 136.67 Hz to 43.76 Hz. Also the result of frequency response spectrum seismic analysis for the dry and underwater conditions, the maximum equivalent stress are increased from 13.89 MPa to 40.23 MPa. Therefore, reactor internal structures located in underwater condition shall consider carefully the hydrodynamic mass effects even though they have sufficient stiffness required for performing its functions under the dry condition.

Microstructure and Antioxidative Activity of Red, White and Extruded Ginseng

  • Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The objective of this study was to compare the color and microstructure of powder, redness, brownness, and antioxidative activity in extruded ginseng, white ginseng and red ginseng extracts. The colors of extruded dry ginseng powder (moisture content 30%, barrel temperature $110^{\circ}C$, and screw speed 200 rpm) were similar to those of red ginseng. Intact cell wall structure was examined in dried root ginseng at $70^{\circ}C$ (A), white ginseng with skin (D), white ginseng without skin (E), and red ginseng (F) under a scanning electron microscope. The cell wall was not detected in samples B and C (dry ginsengs extruded with 25% and 30% moisture contents, respectively). Intact starch granules were detected in samples A, D, and E under a scanning electron microscope. Melted starch granules were detected in samples B, C, and F. Colors (L, a, b) of 50% EtOH extracts were similar in samples C and F. Browniness and redness of extracts were high in extruded dry ginseng and red ginseng extracts. Extruded dry ginseng (B) showed higher electron donation ability and phenolic content than the other samples.

Extrusion of Ginseng Root in Twin Screw Extruder: Pretreatment for Hydrolysis and Saccharification of Ginseng Extrudate

  • Han, Jae-Yoon;Kim, Mi-Hwan;Tie Jine;Solihin Budiasih W.;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • The objective of this experiment was to investigate the effect of extrusion of ginseng roots in twin screw extruder on susceptibility of ginseng starch toward hydrolysis by ${\alpha}-amylase$ BAN 480L (Novozyme, Denmark) and cellulase Celluclast 150L and saccharification by amyloglucosidase AMG-E (Novozyme, Denmark). The extrusion was conducted at 22% and 30% moisture contents of feed at screw speed 300 rpm. Barrel temperature at zone 1 was adjusted at $100^{\circ}C$ and $120^{\circ}C$. The results showed that extrusion process improved the ginseng ${\alpha}-amylase$ susceptibility as compared to traditionally dried ginseng (white and red ginseng). Reducing sugar of hydrolyzed extruded samples was 2,500% of its initial concentration, whereas the reducing sugar of hydrolyzed non-extruded sample was only 200% of its initial concentration. However, addition of cellulase during liquefaction lowered the saccharification yield of both non-extruded and extruded samples as well.

Physical and Chemical Properties of Cornmeal Extrudates by Addition of Defatted Soy Flour and Squid (옥수수가루, 탈지 콩가루 및 오징어를 이용한 스낵제품의 물리화학적 특성연구)

  • 정복미;김은실;이기춘
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.292-298
    • /
    • 2001
  • This study was conducted to investigate physicochemical properties of extrudates combining 4 levels of squid (0, 3, 5 and 7%) with 3 levels of defatted soy flour (0, 5, and 10%). Blends were adjusted to moisture content of 27% and then extruded in a single-screw laboratory extruder at 170rpm screw speed and 16$0^{\circ}C$ barrel temperature. The extruded materials were dried at 6$0^{\circ}C$ for 8hr to a moisture content of 3~4% and refrigerated at 4$^{\circ}C$ for 12 hour before examination for textural properties, expansion ratio, bulk density, shear force and Hunter color. Expansion ratio of extrudates decreased as squid content increased whereas bulk density and shear force increased. Expansion ratio of extrudates was not significantly different by defatted soyflour level. Bulk density of products decreased as defatted soyflour content increased but shear force of products increased as defatted soyflour content increased. In scores of sensory hedonic evaluation of snacks, appearance, flavor, texture and overall acceptability values had lowered as squid level increased. Therefore, according to materials contents on extrudates increased, nutritional contents of this products increased and also shear force and bulk density in physical properties increased whereas expansion ratio decreased.

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.