• 제목/요약/키워드: Baroreflex

검색결과 24건 처리시간 0.026초

압반사 제어모델을 이용한 심혈관시스템 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model)

  • 최병철;전계록
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptor sensing the variance of pressure in the cardiovascular system, and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in the aortic sinus. The proposed heart activity baroreflex regulation model contains electric circuit sub-model. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the cardiovascular system by variable value in time delay sub-model. As simulation results, we observe three patterns of the cardiovascular system variability by the time delay, First, if the time delay over 2.5 second, aortic pressure and stroke volume and heart rate is observed nonperiodically and observed. Finally, if time delay under 0.1 second, then heart rate and aortic pressure-heart rate trajectory is maintained in stable state.

  • PDF

그레인저 인과성 분석을 이용한 정상인과 수면무호흡증 환자의 수면 중 압수용기 반사 효과의 평가 (Evaluation of Baroreflex Effectiveness in Normal Subject and Obstructive Sleep Apnea Patient during Sleep using Granger Causality Analysis)

  • 정다운;김상경;김고근;이유진;정도언;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권4호
    • /
    • pp.95-98
    • /
    • 2014
  • The baroreflex is one kind of homeostatic mechanisms to regulate acute blood pressure (BP) changes by controlling heartbeat interval (HBI). To quantify the effect of baroreflex, we suggested a new approach of analyzing Granger causality between systolic BP (SBP) and HBI. The index defined as baroreflex effectiveness (BRE) was generated by the hypothesis that more effectual baroreflex would be related to more effective Granger causal influence of SBP on HBI. Six obstructive sleep apnea (OSA) patients (apnea-hypopnea index, AHI ${\geq}5$ events/hr) and six normal subjects participated in the study. Their SBP and HBI during nocturnal sleep were obtained from a non-invasive continuous BP measurement device. While the BRE ($mean{\pm}SD$) of normal subjects was $47.0{\pm}4.0%$, OSA patients exhibited the BRE of $34.0{\pm}3.8%$. The impaired baroreflex function of OSA patients can be explained by the physiological mechanism associated with recurrent hypoxic episodes during sleep. Thus, the significantly lower BRE in OSA patients verified the availability of Granger causality analysis to evaluate baroreflex during sleep. Furthermore, the range of BRE obtained from normal subjects was not overlapped with that obtained from OSA patients. It suggests the potential of BRE as a new helpful tool for diagnosing OSA.

RR간격변동과 열합변동간의 폐루프 귀환 모델을 통한 압수용체반사감도의 평가 (Assessments of baroreflex sensitivity through the closed-loop feedback model between RR fluctuation and arterial blood pressure fluctuation)

  • 신건수;최석준;이명호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1643-1646
    • /
    • 1997
  • In this study, the method is proposed, which enable us to noninvasively assess baroreflex sensitivity through the closed-loop feedback modle between RR flucturarion and arterial blood pressure fluctuation. The proposed indexes of baroreflex sensitivity, BRS$_{LF}$와 BRS$_{HF}$ are calculated by the modulus (or gain) of the transfer function between fluctuatuons in blood pressure and RR interval in the LF band HF band, where the coherence is more than 0.5 to evaluate the performance of the proposed method, it is applied to various cardiovascular variability signals obtained form subjects under the submaximal ecericse on bicycle ergometner. In result it is concluded that the proposed method can noninvasively assess the baroreflex sensitivity.ty.

  • PDF

압반사 제어모델을 이용한 심혈관 시스템의 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model)

  • 최병철;엄상희;남기곤;손경식;이영우;전계록
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.165-170
    • /
    • 1997
  • In this paper, we consider the aortic sinus baroreceptor, which is the most representative baroreceptors sensing the variance of pressure in the cardiovascular system(CVS), and propose heart activity control model to observe the effect of delay time in heart period and stroke volume under the regulation of baroreflex in arotic sinus. The proposed heart activity baroreflex regulation model contains CVS electric circuit sub-model, baroreflex regulation sub-model and time delay sub-model. In these models, applied electric circuit sub-model is researched by B.C.Choi and the baroreflex regulation sub-model transforms the input, the arotic pressure of CVS electric circuit sub-model, to outputs, heart period and stroke volume by mathematical nonlinear feedback. We constituted the time delay sub-model to observe sensitivity of heart activity baroreflex regulation model by using the variable value to represent the control signal transmission time from the output of baroreflex regulation model to efferent nerve through central nervous system. The simulation object of this model is to observe variability of the CVS by variable value in time delay sub-model. As simulation results, we observe three patterns of CVS variability by the time delay. First, if the time delay is over 2.5 sec, arotic pressure, stroke volume and heart rate is observed nonperiodically and irregularly. Second, if the time delay is from between 0.1 sec and 0.25 sec, the regular oscillation is observed. Finally, if time delay is under 0.1 sec, then heart rate and arotic pressure-heart rate trajectory is maintained in stable state.

  • PDF

단기적 자율조절기능을 포함하는 심혈관계 혈류역학 모델링에 관한 수치적 연구 (Computational Study on the Hemodynamics of Cardiovascular System Including Short-term Auto-regulation Functions)

  • 심은보;정찬일;최한고
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권5호
    • /
    • pp.393-402
    • /
    • 2001
  • 전체 심혈관계의 혈류역학적 특성을 분석할 수 있는 수치해석 방법을 개발하였다. 이는 12개의 요소들로 구성된 lumped parameter모델에 기초하고 있으며 인체의 신경계에 의한 자율조절기능을 모사하기 위해 주로 혈압의 단기적 조절을 위한.baroreflex system뿐 아니라 cardiopulmonary reflex 메커니즘가지도 구현하여 모델에 포함시켰다. 또한 교감 및 부교감 신경에 의한 자극-반응 전달을 구현함에 있어 생리학적 데이터에 기초한 방법을 사용하였다. 본 연구의 수치해석 코드를 검증하기 위하여 우선 보통 상태의 심혈관계에 대하여 혈류역학적 계산 결과를 기존의 참고문헌들에서의 값들과 비교 검토하였다. 심혈관계 모델의 혈류역학적 자극에 대한 반응 결과를 조사하기 위하여. 20% 출혈이 발생하는 경우와 LBNP(Lower Body Negative Pressure) 모사를 수행하였다. 두 경우 모두. 비교적 실험치와 잘 일cl하고 있음을 확인할 수 있었다. 특히 LBNP 수행 시, 외부압력의 크기가 커질수록 baroreflex만을 포함하고 있는 방법은 baroreflex와 cardiopulmonary reflex 모두를 포함하고 있는 방법에 비하여 다소 부정확한 결과를 보여주고 있는데. 이는 cardiopulmonary reflex 메커니즘의 중요성을 보여주고 있다.

  • PDF

심혈관계의 폐루프 귀환 모델을 통한 압수용체반사감도의 평가에 관한 연구 (A Study on Assessments of Baroreflex Sensitivity through the Closed-loop Feedback Model of Cardiovascular System)

  • 최석준;신건수;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.447-450
    • /
    • 1997
  • In this paper, the method is proposed, which enables us to assess baroreflex sensitivity noninvasively through the closed-loop feedback model between RR fluctuation and arterial blood pressure fluctuation, which are obtained in blood low signals. The proposed indexes of baroreflex sensitivity, $BRS_{LF}$ and $BRS_{HF}$, are calculated by the modulus(or gain) of the transfer unction between two fluctuations above in LF band and HF band, where the coherence is more than 0.5. To evaluate the performance of the proposed method, it is applied to blood low signals obtained from subjects at tilt angles of $0^{\circ},\;45^{\circ},\;90^{\circ}$ and $0^{\circ}$ successively. In result, it is concluded that the proposed method enables us to assess baroreflex sensitivity noninvasively.

  • PDF

Additive Role of the Vestibular End Organ and Baroreceptors on the Regulation of Blood Pressure in Rats

  • Lan, Yan;Yang, Yan-Zhao;Jiang, Xian;Li, Li-Wei;Jin, Guang-Shi;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.367-373
    • /
    • 2013
  • Contribution of the vestibular end organ to regulation of arterial pressure was quantitatively compared with the role of baroreceptors in terms of baroreflex sensitivity and c-Fos protein expression in the rostral ventrolateral medulla (RVLM). Baroreflex sensitivity and c-Fos protein expression in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or baroreceptor unloading. BL attenuated baroreflex sensitivity during intravenous infusion of sodium nitroprusside (SNP), but did not significantly affect the sensitivity following infusion of phenylephrine (PE). Baroreflex sensitivity became positive following sinoaortic denervation (SAD) during infusion of PE and attenuated sensitivity during infusion of SNP. Baroreflex sensitivity also became positive following double ablation (BL+SAD) during infusion of PE, and attenuated sensitivity during infusion of SNP. c-Fos protein expression increased significantly in the RVLM in the sham group after SNP administration. However, the BL, SAD, and SAD+BL groups showed significant decreases in c-Fos protein expression compared with that in the sham group. The SAD group showed more reduced c-Fos protein expression than that in the BL group, and the SAD+BL group showed less expression than that in the SAD group. These results suggest that the vestibular system cooperates with baroreceptors to maintain arterial pressure during hypotension but that baroreceptors regulate arterial pressure during both hypotension and hypertension. Additionally, afferent signals for maintaining blood pressure from the vestibular end organs and the baroreceptors may be integrated in the RVLM.

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권1호
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.

심활성도 압반사 제어 모델을 이용한 심혈관시스템 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model of the Heart Activity)

  • 최병철;정도운;손정만;예수영;김호종;이현철;김윤진;정동근;이상훈;전계록
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권6호
    • /
    • pp.565-573
    • /
    • 2004
  • 본 연구에서는 심혈관시스템 내의 압력 변화를 감지하는 압수용체 중 가장 대표적인 대동맥 압수용체의 시뮬레이션을 위한 심활성도 압반사 제어모델을 제안하였다. 그리고 제안된 모델은 압반사 조절, 시간지연을 포함한 전기회로 모델들로 구성하였으며, 대동맥동의 압반사 조절시 시간지연이 심주기와 일회 심박출량에 주는 영향을 관찰할 수 있도록 하였다. 심활성도 압수용체 제어 모델에서 시간지연의 기전은 대동맥동 압수용체에서 감지된 압력 정보가 구심성 신경으로 전달되고, 이 정보는 중추신경을 거쳐 원심성 신경으로 전달되어 제어 기능을 수행한다. 제안된 모델의 시뮬레이션 결과 시간지연에 따라 심혈관시스템 변이성의 세가지 패턴을 관찰할 수 있었다. 먼저 시간지연이 2.5초 이상일 경우에는 대동맥압, 일회심박출량, 심박동수가 비주기적으로 발생하고 불규칙인 것을 관찰할 수 있었고, 시간지연이 0.1초에서 2.5초 사이일 경우에는 주기적인 진동이 발생함을 관찰할 수 있었다. 그리고 시간지연이 0.1초 이하인 경우에는 심박동수와 동맥압-심박동수의 궤적은 안정상태를 유지함을 관찰할 수 있었다.