• Title/Summary/Keyword: Barley straw application

Search Result 34, Processing Time 0.017 seconds

Effects of Barley Straw Application on Growth and Yield in Soybean (보릿짚 시용이 콩의 생육 및 수량에 미치는 영향)

  • 김수경;손범영;김대호;김은석;강동주
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.6
    • /
    • pp.387-391
    • /
    • 2000
  • Barley straw is a good source of organic matter for next crop growth following barley. This study was conducted to investigate effects of barley straw application methods (application, removal, or incineration) on growth and yield in soybean cultivation following barley. A soybean variety, Eunhakong, was sown on 12 June with drill-seeder attached to tractor after tillage. Barley straw application resulted in increase in organic matter content compared to removal and incineration of barley straw, and soil physical properties such as water content and porosity, were improved by application and incineration of barley straw. Weed occurrence was deterred by 44% in barley straw application and by 31% in barley straw incineration compared with removal of barley straw. Number and dry weight of soybean nodules were move abundant in barley straw application than the other treatments at 4 and R2 stages. Barley straw application had less for dry weight than barley straw removal but greater than incineration of barley straw about 30 days after seeding. However barley straw application caused greater top dry weight 90 days after seeding. Root dry weight was not affected by barley straw application method at all growth stage. There're no significant differences in soybean yield among barley straw application methods.

  • PDF

Effect of Soil Salinity Levels on Silage Barley Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Soo;Lee, Soo-Hwan;Kang, Jong-Gook;Kim, Hong-Kyu;Lee, Kyeong-Bo;Park, Ki-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.365-372
    • /
    • 2013
  • Crop development and nutrient availability are strongly influenced by soil salinity levels. This study was conducted to investigate the effect of rice straw and nitrogen (N) fertilizer for silage barley under various soil salinity levels at Saemangeum reclaimed tidal land. Three levels of rice straw (0, 2.5, 5.0 ton rice straw $ha^{-1}$) and N (0, 150, 225 kg N $ha^{-1}$) were applied at 0.04, 0.23, 0.35% soil salinity levels. Biomass yield of silage barley was influenced by the interactions between rice straw application and N fertilization. Although there was no single effect of rice straw application on biomass yield, it was significantly increased with N application and a rice straw application of 5.0 ton $ha^{-1}$. Sodium content in silage barley was significantly lower at 0.04% salinity level, and but it was statistically increased with increasing soil salinity levels. Forage qualities such as total digestible nutrients and relative feed value of silage barley were significantly higher with N application at 0.04% salinity level, but there was no effect of rice straw application. Soil organic matter content was increased with N and rice straw application regardless of soil salinity level. The results of this study showed that the effect of rice straw and N fertilization on silage barley was influenced by soil salinity levels, which indicates that the management practice of silage barley at Saemangeum reclaimed tidal land should consider soil salinity levels.

Effects of Rice Straw Application on Barley Growth and Grain Yield in Paddy Field (답리작 보리 재배시 볏짚 시용 효과)

  • 임시규;김정태;김병주;홍순표;서득용;김완석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • For the labor-saving cultivation of barley in rice-barley double cropping system in paddy field, a series of expriments on the effect of rice straw application were carried out at the National Yeongnam Agricultural Experiment Station from 1992 to 1993. The affection of phenol compounds released from fresh rice straw could be lessened when seeded under rice straw in the soil and that made emergence rate increase by 11%, compared with that on application on the rice straw. Although utilization of rice straw as an organic material caused the poor growth of barley in early stage, it could be enhanced the culm breaking strength. On this reason, affected by rice straw, grain yield was increased from 8% in common barley and up to 20% in malting barley. The more nitrogen, CaO$_2$2 and SiO$_2$ applied, the more decomposition of rice straw accelerated from 2% to 6.9%. On the application of rice straw as an organic material in malting barely cultivation, the content of crude protein was decreased while 1,000-grain-weight and grain assortment was increased.

  • PDF

Effects of Amount of Nitrogen Application on Decomposition of Barley Straw and Growth & Yield of Rice in Paddy Field of Double Cropping (이모작(二毛作) 답(畓)에서 질소시용량(窒素施用量)이 보릿짚 분해(分解)와 수도생육(水稻生育) 및 수량(收量)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Lee, Sang-Bok;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.167-174
    • /
    • 2000
  • To investigate the effect of amount of nitrogen application on decomposition of barley straw, growth and yield of rice in paddy field of double cropping, this study was conducted to Jeonbuk series at the Honam area from 1997 to 1998. Carbon persistence of barley straw was lowered while nitrogen persistence rate was increased as increasing amount of nitrogen application and carbon -nitrogen ratio was not decreased as increasing amount of nitrogen application. Soil microflora under barley straw application was high in order of actinomycetes>cellulosedecomposer>bacteria>fungi. Nitrogen starvation under barley straw application showed at tillering stage of rice, but this was not appeared in plot of N $144kg\;ha^{-1}$ application. Plant height, culm length and ear length of rice plant by barley straw application were short, but those of N $108kg\;ha^{-1}$ application was not different from compared with none-application barley straw. Rice yield of N $108kg\;ha^{-1}$ applied barley straw was smiliar to none-application barley straw, but that of N 90. $144kg\;ha^{-1}$ was highly decreased.

  • PDF

Effects of Barley Straw Application on Soil Physico-Chemical Properties and Nutrient Uptake in Rice Paddy Field of Double Cropping (벼 2모작 논에서 보릿짚 시용이 토양이화학성 및 양분흡수에 미치는 영향)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kang, Seung-Weon;Han, Sang-Soo;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.110-116
    • /
    • 2001
  • This experiment was carried out to investigate the effects of amount of nitrogen application with the barley straw application on the changes in soil physical and chemical properties. nutrient uptake and percentage recovery of chemical fertilizer N in the rice plant from 1997 to 1998. The soil physical properties, such as bulk density, hardness, porosity and gaseous phase were improved by barley straw application. There was also improvement or increment in the soil chemical properties, such as pH, organic matter, T-C. T-N, available $SiO_2$, exchangeable K and cation exchange capacity, but decrease in available $P_2O_5$. The $Fe^{+{+}}$ content in soil after barley straw application was high from tillering stage to panicle forming stage, but becoming lowered toward the heading stage, while $Mn^{+{+}}$ content was increased. N uptake with barley straw application was increased in the N $126kg\;ha^{-1}$ plot, but decreased in the N $141kg\;ha^{-1}$ plot. The uptake of fertilized N was continued longer in barley straw application than none-application plot. Percentage recovery of chemical fertilizer N in rice straw was around 1% at tillering stage, but was highly increasing till maximum tillering stage, while the recovery was generally low in barley straw application. Meanwhile, fertilizer P uptake in barley straw application was high, but potassium uptake was low at all different levels of N application.

  • PDF

Nitrogen Mineralization of Cereal Straws and Vetch in Paddy Soil by Test Tube Analysis

  • Cho, Young-Son;Lee, Byong-Zhin;Choe, Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.102-105
    • /
    • 1999
  • Mineralization of organic N is an important factor in determining the appropriate rate of organic matter application to paddy fields. A kinetic analysis was conducted for nitrogen mineralization of rice, barley, Chinese milk Ovetch (Astragalus sinicus L.; MV) and narrow leaf vetch straw in paddy soil. Nitrogen immobilization occurred rapidly and its rate increased in straw with high C/N ratio. The amount of nitrogen mineralization was rapid in the first year of rice-vetch cropping system. The rate constant (K) depended on the C/N ratio of organic matter. Mineralization of straw increased at high temperature. The amount of available N increment resulted in fast mineralization of straw, especially in rice and barley straw. Chinese milk vetch had the greatest mineralization rate at all temperatures and fertilization levels followed by narrow-leaf vetch. However, rice and barley straws with high C/N ratio immobilized the soil N at the initial incubation duration. Chinese milk vetch or narrow leaf vetch was not effectively mineralized in mixed treatments with rice or barley straw. The mineralization rate of organic matter was mostly affected by the C/N ratio of straw and temperature of incubation. Organic matter with low C/N ratio should be recommended to avoid the immobilization of soil N and the increasing mineralization rate of straw.

  • PDF

Effects of Barley Straw Application and Tillage Method on Soil Physical Property and Soybean Yield in Paddy Field (논에서 콩 재배시 보릿짚 시용과 경운방법에 따른 토양 물리성과 수량)

  • Lee, Sang-Bok;Kim, Byong-Soo;Kang, Jong-Gook;Kim, Sun;Kim, Jai-Duk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.593-598
    • /
    • 2006
  • This study was conducted to investigate the effect of tillage methods such as plowing and rotary tillage (PRT), rotary tillage (RTG), no-tillage after barley straw application (NTB), and barley straw mulching after plowing and rotary tillage (BPR) on the growth and the yield of soybean when cultivated after the cultivation of barley. The methods were compared with the control method in which plowing and rotary tillage after barley straw incineration was applied. Barley straw application resulted in increase in organic matter, total nitrogen, phosphate, and exchangeable cation regardless of tillage methods. Porosity and moisture level in paddy soil was ranked as follows : PRT > RTG > BPR > control > NTB. Decomposition rate of barley straw dramatically increased to 41.7% toward 30 days after soybean sowing, higher in NTB, DRB, and RTG than in BPR. Weed occurrence was decreased 36% in NTB and 40% in BPR. Root activity, nodulation and the dry weight per plant of soybean at flowering stage were highest in NTB and lowest in PRT. Soybean yield in NTB was 3,070 kg/ha increasing 19%, whereas that in PRT was not increased. Therefore in case of a frequent rain during the cultivation of soybean in paddy field PRT could result in excess moisture level in soil, the cultivation without tillage is desirable.

Effect of Rice Straw Application on Yield of Whole Crop Barley and Change in Soil Properties under Upland Condition in Saemangeum Reclaimed Tidal Land

  • Lee, Su-Hwan;Shin, Pyeong;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yeol;Lee, Sang-Hun;Rho, Tae-Hwan;Song, Beom-Heon;Cho, Jae-Yeong;Lee, Kyoung-Bo;Lee, Keon-Hui;Park, Ki-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Newly reclaimed tidal land is known to be in low status of soil fertility. The incorporation of crop residue is an effective method to improve soil properties and fertility in reclaimed saline soils. The objective of this study was to evaluate the efficiency of rice straw (RS) application to improve physico-chemical properties of saline-sodic soil and its contribution to productivity of whole crop barley. Increasing rate of rice straw improved growth parameter related to yield of whole crop barley, which increased tiller number significantly (p<0.05).The yield increased by 15% (F.W) and 9% (D.W) in rice straw-amended plots. The content of soil organic matter (SOM) in the surface soil (0-20cm) with rice straw incorporation increased by 5~9% (RS 2.5~RS 7.5) compared to RS 0, in which the content of SOM decreased after two consecutive cultivations. Rice straw incorporation promoted soil physico-chemical properties and nutrient-availability of the test crop, as indicated in change in soil bulk density, porosity and increased nutrient uptake of plant. Especially, the P content and uptake of whole crop barley increased with increasing the rate of rice straw application. In conclusion, the rice straw application at rates of $5.0-7.5ton{\cdot}ha^{-1}$ in reclaimed saline soils effectively improved soil properties and crop productivity, which has potentials to reduce the loss of chemical fertilizers and facilitate the favorable condition for crop growth under adverse soil condition.

Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In vitro

  • Wang, Y.;Ramirez-Bribiesca, J.E.;Yanke, L.J.;Tsang, A.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The effects of exogenous fibrolytic enzymes (EFE; a mixture of two preparations from Trichoderma spp., with predominant xylanase and ${\beta}$-glucanase activities, respectively) on colonization and digestion of ground barley straw and alfalfa hay by Fibrobacter succinogenes S85 and Ruminococcus flavefaciens FD1 were studied in vitro. The two levels (28 and 280 ${\mu}g$/ml) of EFE tested and both bacteria were effective at digesting NDF of hay and straw. With both substrates, more NDF hydrolysis (p<0.01) was achieved with EFE alone at 280 than at 28 ${\mu}g$/ml. A synergistic effect (p<0.01) of F. succinogenes S85 and EFE on straw digestion was observed at 28 but not 280 ${\mu}g$/ml of EFE. Strain R. flavefaciens FD1 digested more (p<0.01) hay and straw with higher EFE than with lower or no EFE, but the effect was additive rather than synergistic. Included in the incubation medium, EFE showed potential to improve fibre digestion by cellulolytic ruminal bacteria. In a second batch culture experiment using mixed rumen microbes, DM disappearance (DMD), gas production and incorporation of $^{15}N$ into particle-associated microbial N ($^{15}N$-PAMN) were higher (p<0.001) with ammoniated (5% w/w; AS) than with native (S) ground barley straw. Application of EFE to the straws increased (p<0.001) DMD and gas production at 4 and 12 h, but not at 48 h of the incubation. EFE applied onto S increased (p<0.01) $^{15}N$-PAMN at 4 h only, but EFE on AS increased (p<0.001) $^{15}N$-PAMN at all time points. Prehydrolysis increased (p<0.01) DMD from both S and AS at 4 and 12 h, but reduced (p<0.01) $^{15}N$-PAMN in the early stage (4 h) of the incubation, as compared to non-prehydrolyzed samples. Application of EFE to barley straw increased rumen bacterial colonization of the substrate, but excessive hydrolytic action of EFE prior to incubation decreased it.

Effects of Barley Straw on the Biochemical Properties in the Submerged Soil (보릿짚시용(施用)이 논토양(土壤)의 생화학성(生化學性)에 미치는 영향(影響))

  • Chung, Chi-Ho;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.93-99
    • /
    • 1989
  • To investigate the effects of barley straw on microflora, acetylene reducing activity, enzyme activity and sugar in relation to nitrogen fixation in submerged soil. The obtained results were summarized as follow: Of the nitrogen fixing microorganisms, the number of Azotobactor tended to increase with the application of barley straw as the rice grew. The number of Clostridia were increased at the tillering stage of plant and decreased thereafter, and that of Blue-green algae tended to increase at the heading stage and to decrease thereafter. On the other hand, the number of Blue-green algae tended to increase by the application of barley straw. Acetylene reducing activity was decreased in the heading stage and increased in the harvesting stage. There was no difference of acetylene reducing activity between the application of barley straw and control. In submerged soil treated with barley straw, enzyme activity of ${\beta}$-glucosidase was increaded significantly but that of phosphatase was not entirely affected. Of the change of enzyme activity, the observation of ${\beta}$-glucosidase was increased at the heading stage and decreased thereafter, and the activity of phosphatase tended to decrease in the submerged soil when rice plants were not cultured and to increase in the submerged soil when rice plants were cultured. Protease tended to increase in the heading stage and increase in the tillering stage and heading stage with the application of barley straw. The change of sugar was decreased and hexose was increased in the tillering stage with the application of barley straw.

  • PDF