• Title/Summary/Keyword: Barium Titanate Powder

Search Result 47, Processing Time 0.024 seconds

Effect of $BaTiO_3$ Powder Content on the Dielectric Constant of Epoxy/$BaTiO_3$ Composite Embedded Capacitor Films ($BaTiO_3$ 입자 함량이 에폭시/$BaTiO_3$ 복합 내장형 커패시터 필름의 유전상수에 미치는 영향)

  • Cho Sung-Dong;Lee Joo-Yeon;Hyun Jin-Gul;Lee Sang-Yong;Paik Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.1-9
    • /
    • 2004
  • We investigated the effect of $BaTiO_3$ powder content on the dielectric constant of epoxy/$BaTiO_3$ composite embedded capacitor films (ECFs). Variations of the dielectric constant of epoxy/$BaTiO_3$ composite ECFs with unimodal $BaTiO_3$ powder content were measured. To explain this result, density of the ECFs was measured, and surface and cross section images of the ECFs were observed. In addition, variations of the dielectric constant of epoxy/$BaTiO_3$ composite ECFs with various bimodal combinations were measured. In the case of unimodal powder, the maximum dielectric constant was about 60 at $60\;vol\%$ S4 powder. And more powder addition lowered the dielectric constant of the ECFs, which was due to voids or pores formation by excess $BaTiO_3$ powder. In the case of bimodal combination, $75vol\%\;BaTiO_3$ powder loading and the dielectric constant of 90 were achieved using $S_5+C_1$ combination, biggest and smallest powder combination.

  • PDF

Glycothermal synthesis and characterization of $BaTiO_3$ glycolate (Glycothermal법에 의해 제조된 $BaTiO_3$ glycolate의 특성)

  • Kil, Hyun-Sig;Amar, Badrakh;Lim, Dae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.286-287
    • /
    • 2006
  • Barium titanate ($BaTiO_3$) glycolate particles were synthesized at temperature as low as $100^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$ and amorphous titanium hydrous gel as precursors and ethylene glycol as solvent. The particle size and morphology of $BaTiO_3$ glycolate powders can be controlled by varying the reaction conditions such as the reaction temperature and Ba:Ti molar ratio of starting precursors. After glycothermal treatment at $220^{\circ}C$ for 24 h in 1.25:1(Ba:Ti), the average particle size of the $BaTiO_3$ glycolate powder was about 200-400 nm and low agglomeration. $BaTiO_3$ powders were formed by heat-treating the glycolate powder in air at $500-1000^{\circ}C$. As a result, the size of $BaTiO_3$ crystallites changed from around 50-300 nm. It is also demonstrated that the size and shape of $BaTiO_3$ particles investigated as a function of calcination temperature. The $BaTiO_3$ particles obtained from optimum synthesis condition were pressed, sintered and measured for the dielectric property. The $BaTiO_3$ ceramics sintered at $1250^{\circ}C$ for 2 h had 98 % of theoretical density. The ceramics have an average grain size of about $1\;{\mu}m$ and displays the high dielectric constant (~3100) and low dielectric loss (<0.1) at room temperature.

  • PDF

Electric Properties of the Laminate Type PTC(Positive Temperature Coefficient of Resistance) Thermistor According to Polymer Blowing Agent (유기발포제에 따른 적층형 PTC(Positive Temperature Coefficient of Resistance) 써미스터의 전기적 특성)

  • Lee, Mi-Jai;Hwang, Jong-Hee;Kim, Jin-Ho;Lim, Tae-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.658-663
    • /
    • 2012
  • The electrical properties of a laminated SMD type PTC thermistor for microcircuit protection were investigated as a function of polymer blowing agent addition. Green ceramics for multilayered $BaTiO_3$-based PTCRs were formed by doctor blade method of barium titanate powders; we successfully laminated the sintered ceramic chips to obtain 10 layer chip PTCRs with PTC effect. The sintered density increases with increasing sintering temperature. The electrical properties of the sintered samples were strongly dependent on the calcination and addition of a polymer blowing agent. When $BaTiO_3$ powders containing 0.2 mol% of $Y_2O_3$ were calcined at $1000^{\circ}C$ for 2 hrs, the resistivity jump was of 1-2 orders of magnitude. The resistivity at room temperature increases according to the polymer blowing agent addition. Also, the sample using the calcined powder showed a lower resistivity than that of the sample prepared using powders without calcinations. With an increase in the OBSH, the magnitude of the resistivity jumped as a function of the temperature increase. The resistivity of the sintered bodies after the addition of 0.5 wt% polymer blowing agent at $1290^{\circ}C$ for 2 h was shown to be about $8.5{\Omega}{\cdot}cm$; the jump order of the sintered bodies was shown to be on the order of $10^2$.

Preparation of Ferroelectric Barium Titanate Fine Particles by Hydrothermal Method and Their Dielectric Properties -Variation of Dielectric Properties and Phase Transition by Heat Treatment- (강유전성 티탄산바륨 극미립자의 수열합성과 그 유전특성 - 열처리에 의한 상전이 및 유전 특성 변화 -)

  • Um, Myeong-Heon;Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.817-821
    • /
    • 1998
  • $BaTiO_3$ particles were prepared using $Ba(OH)_2{\cdot}8H_2O$ and $Ti(OC_2H_5)O_4$ by the hydrothermal method and their characteristics treated at the various temperatures have been investigated. This prepared $BaTiO_3$ powder includes a very small amount of $H_2O$ and $OH^-$. By increasing the treated temperature from $200^{\circ}C$ to $1000^{\circ}C$, the mean particle size was accordingly increased from $0.022{\mu}m$ to $0.072{\mu}m$ and the tetrogonality(c/a)was increased from 1.02 to 1.2 so that the phase transition to tetroganal takes place. $BaTiO_3$ sintered at $1250^{\circ}C$ after heat treatment at $400^{\circ}C$ for 3 hrs showed a specific dielectric constant of 8120 and surface activation energy was 9680 kcal/mol.

  • PDF

Curie Temperature and Tunable Dielectric Properties of Barium Strontium Titanate Thick Films (티탄산 바륨 스트론튬 (BaxSr1-xTiO3) 후막의 상전이온도와 가변 유전특성)

  • Jeon, So-Hyun;Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung;Yoon, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.421-426
    • /
    • 2006
  • [ $(BaSr)TiO_3$ ] thick films were prepared by tape casting method, using $BaTiO_3\;and\;SrTiO_3$ powder slurry in order to investigate dielectric properties i.e. dielectric constant, ${\varepsilon}_r$, Curie temperature, $T_c$. Grain growth within $(BaSr)TiO_3$ thick films was observed with increasing weight ratio of $BaTiO_3$. This observation can be explained by phenomena of substitution of $Sr^{2+}$ ion for $Bi^{2+}$ ion in the $BaTiO_3$ system. Also, the Curie temperature in $(BaSr)TiO_3$ thick films was shifted to lower temperature range with increasing $ SrTiO_3$. Furthermore, Curie temperature having maximum dielectric constant was in the range of $-40^{\circ}C\;to\;30^{\circ}C$, and hence sharper phase transformation occurred at Curie temperature. There occurred decrease in tunability and k-factor of $(Ba_{0.6}Sr_{0.4})TiO_3$ calculated from the dielectric constant, ${\varepsilon}_r$ above Curie temperature. In addition, above the $60^{\circ}C$, phase fixation was observed. This means that internal stress relief occurred with increasing $90^{\circ}$ domains.

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Study on the Effects of BaTiO$_3$ Particle Size on Dielectric Constant and Leakage Current of Epoxy/BaTiO$_3$ Composite Films for Embedded Capacitors (BaTiO$_3$ 분말의 입자 크기가 내장형 커패시턴용 에폭시/BaTiO$_3$복합체 필름의 유전상수와 누설전류에 미치는 영향에 관한 연구)

  • 조성동;이주연;백경욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Polymer/ceramic composite is of great interest as a dielectric material for embedded capacitors. This paper is concerned in the effects of $BaTiO_3$ particle size on epoxy/$BaTiO_3$ composite films for embedded capacitors. 6 different size powders smaller than 1 $\mu\textrm{m}$ in diameter and bisphenol-A type epoxy were used for this experiment. Dielectric constant of the epoxy/$BaTiO_3$ composite capacitors increases as the powder size increases at the same powder loading, which is due to the increase of tetragonality of the powders as particle size increases. And leakage current of the capacitors also increases dramatically as the powder size increases. It was explained that this is due to the decrease of the number of $BaTiO_3$epoxy/$BaTiO_3$ potential barriers per unit length and, moreover, the enhancement of potential barrier lowering effects caused by increase of potential drop per one barrier. As a result, there is tradeoff between high dielectric constant and low leakage current in the epoxy/$BaTiO_3$ composite capacitors. So it is important to select proper size $BaTiO_3$ powders in accordance with needs.

  • PDF