• Title/Summary/Keyword: Bare tidal flats

Search Result 6, Processing Time 0.021 seconds

Calculation of Blue Carbon Stock and Analysis of Influencing Factors in Bare Tidal Flats (비식생 갯벌의 블루카본 저장량 산정 및 영향인자 분석)

  • Park, Kyeong-deok;Kang, Dong-hwan;Jo, Won Gi;So, Yoon Hwan;Kim, Byung-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.9
    • /
    • pp.767-779
    • /
    • 2022
  • In this study, sediment cores were sampled from tidal flats (six sites) in the west and south coastal wetlands, the blue carbon stock in the tidal flat sediments was calculated, and the blue carbon stock characteristics and influencing factors were analyzed. The sediment particle size of the west coastal tidal flats was larger than that of the south coastal tidal flats, and the organic carbon content in the south coastal tidal flats was more than twice that of the west coastal tidal flats. Blue carbon stock per unit area was 28.4~36.8 Mg/ha on the west coastal tidal flats and 69.8~89.8 Mg/ha on the south coastal tidal flats, which was more than twice higher in the south coastal tidal flats than in the west coastal tidal flats. The total amount of blue carbon stock in the tidal flats was the highest in Suncheon Bay tidal flats at 153,626 Mg, and followed by Gomso Bay tidal flats at 141,750 Mg, Hampyeong Bay tidal flats at 58,420 Mg, Dongdae Bay tidal flats at 44,900 Mg, Cheonsu Bay tidal flats at 36,880 Mg, and Jinhae Bay tidal flats at 26,205 Mg. Blue carbon stock per unit area was higher in the south coastal tidal flats, but the total amount of blue carbon stock in the tidal flats was higher in the west coast. The slope of the regression function of blue carbon stock with respect to the organic carbon content in the tidal flat sediments was estimated to be about 0.05 to 0.07, and the slope of the regression function was higher in the west coastal tidal flats than in the south coastal tidal flats.

Soil Salinity Influencing Plant Stands on the Reclaimed Tidal Flats of Kyonggi-Bay in the Midwestern Coast of Korea (우리나라 중서부 해안 경기만 간척지에서 식생 분포에 대한 토양 염도의 영향)

  • Kim, Eun-Kyu;Chun, Soul;Joo, Young-K.;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.280-288
    • /
    • 2009
  • To identify controlling factors for spatial variation of vegetation in reclaimed tidal flats, plant stands were investigated in a newly reclaimed as well as three matured tidal flats, and a natural tidal flat in the midwest coast of Korea. Electrical conductivity of saturated soil extract (ECe) was measured to assess soil salinity. Soil salinity differed significantly among plant stands. Depending on soil salinity, plant species showed different niches: glycophyte predominated low saline spots, halophyte predominated high saline spots. Soil salinity for each plant habitats was in order of as follow: bare soil or plant wilted > mixed pioneer halophyte > pioneer halophyte > mixed with pioneer halophyte and facultative halophyte > mixed facultative halophyte > facultative halophyte > mixed with facultative halophyte and glycophyte > glycophyte > mixed glycophyte stands. These results suggested that plant distribution might have been influenced by spatial edaphic gradient (soil salinity), and thus it could be utilized as an indicator for field soil salinity gradient. Relationship between soil salinity and plant distribution was not different among the aged reclaimed tidal flats, suggesting that the vegetative population might have changed into a similar direction since the reclamation.

Soil Salinity and Continuum Distribution of Vegetation on the Three Reclaimed Tidal Flats of Kyonggi-Bay in the Mid-West Coast of Korea (한국 중부 서해안 경기만 일대 3개 간척지의 토양 염농도와 식생의 연속분포)

  • Kim, Eun-Kyu;Chun, SoUl;Joo, Young-K.;Jung, Yeong-Sang;Jung, Hyeung-Gun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.83-93
    • /
    • 2008
  • Assessing for flora distribution is necessary for land management and environmental research in reclaimed lands. This study was conducted to find out the relationship between vegetation distribution and soil salinity on three reclaimed tidal flats of Kyonggi-bay in the mid-west coast of Korea. We investigated the soil salinity and identified the vegetation at the continuum distribution spots, and describe the characteristics of continuum distribution. On the reclaimed tidal flats, spatial variation of vegetation formed partially, however as the result for connection of each spatial variation along with the soil salinity, continuum distribution formed and it was overlapped edaphic gradient with vegetation distribution, it means that the continuum distribution correspond with soil salinity gradient, as the evidence high salt tolerance species occurred at high saline spots, non salt tolerance species occurred at low saline spots. On the aged reclaimed tidal flats, continuum type was various and also clearly distinguished but it was not clear on the early stage of reclamation. The continuum distribution distinguished sequential and non-sequential type. Sequential type started from high saline zone and connected to low saline zone gradually, on this type, vegetation changed from pioneer halophyte to facultative halophyte and glycophyte along with the salinity gradient. Non-sequential type formed by non-sequential change of soil salinity, on this type, vegetation distribution was non-regular form because it has not changed gradually. In the aged reclaimed land, vegetation wilted zone existed with high salinity, and continuum distribution started from this zone with bare patch.

The Land-cover Changes and Pattern Analysis in the Tidal Flats Using Post-classification Comparison Method: The Case of Taean Peninsula Region (선분류 후비교법을 이용한 간석지의 토지피복 변화 및 패턴 분석 - 태안반도 지역을 사례로 -)

  • Jang, Dong-Ho;Kim, Chan-Soo;Park, Ji-Hoon
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.2
    • /
    • pp.275-292
    • /
    • 2010
  • This study investigated the land-cover changes in the tidal flat of the Taean peninsula due to man-made environmental changes between 1972 and 2008, through time-series analysis based on a modified post-classification comparison method and multi-temporal satellite images. The analysis revealed that the land-cover of the tidal flat has changed from tidal flat to wetland and from wetland to paddy field between 1972 and 2008. Also, the pattern of detailed land-cover changes is as follows: tidal flat to wetland; lake and saltpan to bare land and paddy field. The accurate classification of each image is needed for the application of the post-classification comparison method. The overall accuracy of the classified images was found to be 95.33% on average, and the Kappa value was 0.941 on average.

Growth and RAPD Variation of Enteromorpha prolifera (Oeder) J. Agardh, (Ulvaceae, Chlorophyta) from Korea

  • Yoon Jang-Taek;Chung Gyu-Hwa
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.156-164
    • /
    • 2002
  • Enteromorpha prolifera of the isomorphic diploid sporophyte and the haploid gametophyte generations inhabit rocks, tidal flats and tidal pools in the middle parts of intertidal zones. In this experiment, their thalli were observed by bare eyes from October and experienced $74\pm16.5cm$ maximum growth the following March and April. The rate of occurrence of the thalli per month was highest in March, while their biomass peaked at $1,464\pm41.5 g/m^2$ in Jangheung in April. Genetic similarity was investigated samples of E. prolifera collected from Muan, Wando, Jangheung, Yosu and Jinhae, at the south coast of Korea. Random amplified polymorphic DNA (RAPD) markers were used. For the RAPD analysis, 3 ng of the DNA extracted from the thalli using he phenol/chloroform method was amplified by PCR with a 25 {\mu}L$ reaction solution, arbitrary primers and 36 cycles. Among the 60 primers used, 31 yielded products, most of which showed diverse electrophoresis patterns. Similarities among the groups compared ranged from 0.37 to 0.58. We conclude that the use of RAPD analysis is appropriate to characterize the genetic variability of this commercial species along its geographical distribution.

Landscapes and Ecosystems of Tropical Limestone: Case Study of the Cat Ba Islands, Vietnam

  • Van, Quan Nguyen;Duc, Thanh Tran;Van, Huy Dinh
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.23-36
    • /
    • 2010
  • The Cat Ba Islands in Hai Phong City, northern Vietnam, consist of a large limestone island with a maximum height of 322 m above sea level and 366 small limestone islets with a total area of about $180\;km^2$. The islands are relicts of karst limestone mountains that became submerged during the Holocene transgression 7000 - 8000 year ago. The combination of the longtime karst process and recent marine processes in the monsoonal tropical zone has created a very diversity landscape on the Cat Ba Islands that can be divided into 3 habitat types with 16 forms. The first habitat type is the karst mountains and hills, including karst mountains and hills, karst valleys and dolines, karst lakes, karst caves, and old marine terraces. The second habitat type is the limestone island coast, including beaches, mangrove marshes, tidal flats, rocky coasts, marine notch caves, marine karst lakes, and bights. The third habitat type is karst plains submerged by the sea, including karst cones (fengcong) and towers (fengling), bedrock exposed on the seabed, sandy mud seabed, and submerged channels. Like the landscape, the biodiversity is also high in ecosystems composed of scrub cover - bare hills, rainy tropical forests, paddy fields and gardens, swamps, caves, beaches, mangrove forests, tidal flats, rocky coasts, marine krast lakes, coral reefs, hard bottoms, seagrass beds and soft bottoms. The ecosystems on the Cat Ba Islands that support very high species biodiversity include tropical evergreen rainforests, soft bottoms; coral reefs, mangrove forests, and marine karst lakes. A total of 2,380 species have been recorded in the Cat Ba Islands, included 741 species of terrestrial plants; 282 species of terrestrial animals; 30 species of mangrove plants; 287 species of phytoplankton; 79 species of seaweed; 79 species of zooplankton; 196 species of marine fishes; 154 species of corals; and 538 species of zoobenthos. Many of these species are listed in the Red Book of Vietnam as endangered species, included the white-headed or Cat Ba langur (Trachypithecus poliocephalus), a famous endemic species. Human activities have resulted in significantly changes to the landscape end ecosytems of the Cat Ba islands; however, many natural aspects of the islandsd have been preserved. For this reason, the Cat Ba Islands were recognized as a Biological Reserved Area by UNESCO in 2004.