• 제목/요약/키워드: Bar development

검색결과 826건 처리시간 0.028초

재해분석을 통한 농업토목공사의 공종별 위험성 평가 (Risk Assessment of Agricultural Construction Works using Accident Analysis and Analytic Hierarchy Process)

  • 양영진;오수훈;노재경
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.15-25
    • /
    • 2018
  • The accident risk at the construction workplace associated with agricultural engineering is comparatively higher than those of other fields due mainly to its complex work types and processes. Agricultural engineering deals with a variety of agricultural infrastructures from irrigation and drainage facilities to giant-scale coastal reclamation land infrastructures. The characteristics that most agricultural projects have conducted on a small-scale even worsen the situation drawing low attentions to risk management. Therefore, systematical risk assessment that focuses on details of agricultural construction work process is required in order to enhance safety management capacity and to prevent repetitive accidents ultimately. This study aims to categorize construction work types and processes of agricultural construction works, and to quantitatively assess the accident risk of them based on accident analysis. Regarding classification of construction works, actual 827 accident cases were thoroughly reviewed and coded by their construction site, facility and work type, project scale and so on. Most accidents (71.8 % of total cases) occurred in small-scale construction workplaces with less than 5 billion Korean won project budget. And those accidents related to agricultural infrastructure project (37.4%) and agricultural water development project (22.4%). In terms of work types, accidents frequently took place in form-work followed by pipe installation work, steel bar work and concrete work. The potential risks were compared with actual outbreak of accidents based on Analytic Hierarchy Process (AHP). The results show that the potential conditions of accident expected to be took place is somewhat different from the actual conditions where accidents actually happened. This implicates that risk management manuals or education needs to be adjusted by reflecting unexpected circumstances. Overall, this study is meaningful in that the results could be foundations as to strengthen risk management capacity for agricultural engineering projects.

콘크리트 흡수 수분확산계수 산정을 위한 실험 및 수치해석 모델 개발 (Development of Testing and Analysis Model for Evaluation of Absorbed Water Diffusion into Concrete)

  • 박동천;안재철
    • 한국건축시공학회지
    • /
    • 제11권4호
    • /
    • pp.371-378
    • /
    • 2011
  • 콘크리트는 다공질로서 수분이 접하게 되면 시간경과에 따라 흡수가 일어난다. 다양한 배합의 콘크리트에서 어느 정도 수분 흡수가 빨리 일어나는가는 흡수수분 확산계수 산출을 통하여 가능하며, 본 연구에서는 길이가 다른 시험체의 질량 경시변화를 통하여 깊이별 흡수 수분량을 산출하였다. 흡수 수분 확산계수는 시간과 깊이의 함수로 이뤄진 볼츠만 변수를 사용하여 실험값과의 회귀분석을 통하여 구하였으며, 그 정확도는 비선형 유한요소 과도해석을 통하여 검증하였다.

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

인간공학적 방법을 이용한 사이클 선수의 경기력 평가 (우수선수의 경기력 벤치마킹을 중심으로) (Cyclist's Performance Evaluation Used Ergonomic Method)

  • 하종규;장영관;기재석
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2009년도 추계학술대회
    • /
    • pp.15-24
    • /
    • 2009
  • Cycling that transform human energy into mechanical energy is one of the man-machine systems out of sports fields. Benchmarking means " improving ourselves by learning from others ", therefore benchmarking toward dominant cyclist is necessary on field. the goals of this study were to provide important factors on multi-disciplines (kinematics, physiology, power, psychology) for a tailored-training program that is suitable to individual characteristics. Two cyclist participated in this study and gave consent to the experimental procedure. one was dominant cyclist (years:21 yrs, height:177 cm, mass:70 kg), and the other was non-dominant cyclist(years:21, height:176, mass:70). Kinematic data were recorded using six infrared cameras (240Hz) and QTM (software). Physiological data (VO2max, AT) were acquired according to graded exercising test with cycle ergometer and power with Wingate test used by Bar-Or et. al ( 1977) and to evaluate muscle function with Cybex. Psychological data were collected with competitive state anxiety inventory (CSAI-2) that were devised by Martens et. al (1990) and with athletes' self-management questionnaire (ASMQ) of Huh (2003). It appears that the dominant's CV(coefficient of variability) was higher than non-dominant's CV in Sports Biomechanics domain, that the dominant's values for all factors ware higher than non-dominant's values in physical, and physiological domain, and their values between cognitive anxiety and somatic anxiety were contrary to each other in psychology. Further research on multi-disciplines may lead to the development of tailored-optimal training programs applicable with key factors to enhance athletic performance by means of research including athlete, coach and parents.

  • PDF

휴리스틱을 이용한 의료 수액 낙하 속도 측정 시스템 개발 (Development of the Dripping Speed Measurement System of Medical Liquid using Heuristic)

  • 김정숙;정준호
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.542-547
    • /
    • 2014
  • 본 논문에서는 스마트 폰과 휴리스틱 방법을 이용하여 수액 낙하 속도를 측정하고, 수액 투여 시 종료하는 시간을 측정할 수 있는 의료 IT융합 시스템을 안드로이드 환경에서 개발하였다. 먼저 스마트 폰을 사용하여 수액이 낙하하는 영상을 촬영하고, 이를 임계값을 이용하여 이진영상으로 변환한 후 n번째 프레임과 n-1번째 프레임의 차영상을 계산하였다. 이때 휴리스틱을 사용해서 수액 낙하 속도를 정확하게 측정할 수 있기 위한 이진화 변환시에 최적의 임계값을 구하는 일은 중요하다. 그리고 모바일 응용 프로그램 화면의 진행 상태바를 보면서 정확하게 의사 처방에 맞는 수액 주입 속도를 조절할 수 있다. 본 논문에서 제안한 기법으로 실험한 결과 영상 처리 기법을 이용하여 정확하게 일반 환자들에게 충분히 적용할 수 있도록 수액 낙하 속도를 측정할 수 있음을 알 수 있었다.

승강장 혼잡관리를 위한 열차의 정차시간 예측모형 (Development of the Train Dwell Time Model : Metering Strategy to Control Passenger Flows in the Congested Platform)

  • 김현;이선하;임국현
    • 한국ITS학회 논문지
    • /
    • 제16권3호
    • /
    • pp.15-27
    • /
    • 2017
  • 열차 정차시간 증가는 열차 서비스 빈도를 감소시켜 열차와 승강장의 혼잡이 발생하게 된다. 그러므로 열차 정차시간(Train dwell time)에 관한 연구는 열차 운행 계획수립 관점에서 매우 중요하게 다루어 왔다. 본 논문은 계획된 정차시간을 준수할 수 있도록 승객의 유입을 관리하여 승강장 혼잡을 줄일 수 있는 전략들에 활용할 수 있는 실시간 열차 정차시간 예측모형을 개발하였다. 모형의 특징은 실시간으로 수집 가능한 승차인원, 하차인원, 그리고 열차의 중량 등 3가지 독립변수를 적용하였고, 모형의 설명력(${\bar{R^2}}=0.809$)이 대체적으로 정확한 결과를 보여주었다. 실시간 정차시간 모형은 열차가 계획된 정차시간을 준수하도록 승차 승객 수를 조정하는 게이트 미터링 전략에 활용될 수 있다.

개인정보 영향평가 툴 개발 (Development of Privacy Impact Assessment Tool)

  • 허진만;우창우;박정호
    • 컴퓨터교육학회논문지
    • /
    • 제15권2호
    • /
    • pp.75-81
    • /
    • 2012
  • 인터넷 이용자수의 증가에 비례하여 개인정보의 노출 또는 유출로 인한 개인정보 침해사고가 많아지고 있으며, 침해사고로 인한 정신적 피해와 함께 금전적 피해 등을 입는 경우도 증가하고 있다. 개인정보 노출 및 유출은 담당자 및 내부직원의 실수 또는 고의로 인해 일어나는 경우가 대부분인데, 이는 정보 보호와 관리, 보안에 대한 정책 결정 및 운영 등을 담당하는 최고 책임자인 개인정보관리책임자 (CPO, Chief Privacy Officer)의 개인정보보호에 대한 인식 부족이 주원인이라고 볼 수 있다. 이에 행정안전부는 측정 지표를 제시하고 세부 항목을 열거하여 점수를 매겨서 합산한 점수가 일정 수준에 도달하는지 여부를 체크할 수 있는 체계를 구축하였다. 하지만 이는 사후 평가 성격이 강하기 때문에 시스템 구축 또는 계획에 적용하지 못한다는 한계가 있으며 평가자가 원하는 집계는 물론이고 항목별 다양성의 표현이 필요하다. 본 논문에서는, 각 기업의 정보보안 취약점을 파악하고 보안의 방향을 제시할 수 있는 개인정보 영향평가 툴을 제안한다. 본 툴에서는 평가 결과를 방사형 그래프로 제시하고, 세부 항목은 막대그래프로 표시하여 점수와 함께 보여주기 때문에, 기업입장에서는 취약점 파악과 보안의 방향을 파악할 수 있다.

  • PDF

복합전도성 세라믹 분리막의 탄화수소 직접분해에 의한 고순도 수소와 탄소 제조 (Development of Mixed Conducting Ceramic Membrane for High Purity Hydrogen and Carbon Production from Methane Direct Cracking)

  • 김지호;최덕균;김진호;조우석;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.649-655
    • /
    • 2011
  • Methane direct cracking can be utilized to produce $CO_x$ and $NO_x$-free hydrogen for PEM fuel cells, oil refineries, ammonia and methanol production. We present the results of a systematic study of methane direct cracking using a mixed conducting oxide, Y-doped $BaZrO_3$ ($BaZr_{0.85}Y_{0.15}O_3$), membrane. In this paper, dense $BaZr_{0.85}Y_{0.15}O_3$ membrane with disk shape was successfully sintered at $1400^{\circ}C$ with a relative density of more 93% via addition of 1 wt% ZnO. The ($BaZr_{0.85}Y_{0.15}O_3$) membrane is covered with Pd as catalyst for methane decomposition with an DC magnetron sputtering method. Reaction temperature was $800^{\circ}C$ and high purity methane as reactant was employed to membrane side with 1.5 bar pressure. The $H_2$ produced by the reaction was transported through mixed conducting oxide membrane to the outer side. In addition, it was observed that the carbon, by-product, after methane direct cracking was deposited on the Pd/ZnO-$BaZr_{0.85}Y_{0.15}O_3$ membrane. The produced carbon has a shape of sphere and nanosheet, and a particle size of 80 to 100 nm.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.