• Title/Summary/Keyword: Bankruptcy prediction

Search Result 122, Processing Time 0.025 seconds

Experimental Analysis of Bankruptcy Prediction with SHAP framework on Polish Companies

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • With the fast development of artificial intelligence day by day, users are demanding explanations about the results of algorithms and want to know what parameters influence the results. In this paper, we propose a model for bankruptcy prediction with interpretability using the SHAP framework. SHAP (SHAPley Additive exPlanations) is framework that gives a visualized result that can be used for explanation and interpretation of machine learning models. As a result, we can describe which features are important for the result of our deep learning model. SHAP framework Force plot result gives us top features which are mainly reflecting overall model score. Even though Fully Connected Neural Networks are a "black box" model, Shapley values help us to alleviate the "black box" problem. FCNNs perform well with complex dataset with more than 60 financial ratios. Combined with SHAP framework, we create an effective model with understandable interpretation. Bankruptcy is a rare event, then we avoid imbalanced dataset problem with the help of SMOTE. SMOTE is one of the oversampling technique that resulting synthetic samples are generated for the minority class. It uses K-nearest neighbors algorithm for line connecting method in order to producing examples. We expect our model results assist financial analysts who are interested in forecasting bankruptcy prediction of companies in detail.

Development of the Prediction Method for Hospital Bankruptcy using a Hierarchical Generalized Linear Model(HGIM) (HGLM을 적용한 병원 도산 예측방법의 개발)

  • Noh, Maeng-Seok;Chang, Hye-Jung;Lee, Young-Jo
    • Korea Journal of Hospital Management
    • /
    • v.6 no.2
    • /
    • pp.22-36
    • /
    • 2001
  • The hospital bankruptcy rate is increasing, therefore it is very important to predict the bankruptcy using the existing hospital management information. The hospital bankruptcy is often measured in year intervals, called grouped duration data, not by the continuous time elapsed to the bankruptcy. This study introduces a hierarchical generalized linear model(HGLM) for analysis of hospital bankruptcy data. The hazard function for each hospital may be influenced by unobservable latent variables, and these unknown variables are usually termed as random effects or frailties which explain correlations among repeated measures of the same hospital and describe individual heterogeneities of hospitals. Practically, the data of twenty bankrupt and sixty profitable hospitals were collected for five years, and were fitted to HGLM. The results were compared with those of the logit model. While the logit model resulted only in the effects of explanatory variables on the bankruptcy status at specific period, the HGLM showed variables with significant effects over all observed years. It is concluded that the HGLM with a fixed ratio and a period of total asset turnrounds was justified, and could find significant within and between hospital variations.

  • PDF

A GA-based Rule Extraction for Bankruptcy Prediction Modeling (유전자 알고리즘을 활용한 부실예측모형의 구축)

  • Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.83-93
    • /
    • 2001
  • Prediction of corporate failure using past financial data is well-documented topic. Early studies of bankruptcy prediction used statistical techniques such as multiple discriminant analysis, logit and probit. Recently, however, numerous studies have demonstrated that artificial intelligence such as neural networks (NNs) can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. Although numerous theoretical and experimental studies reported the usefulness or neural networks in classification studies, there exists a major drawback in building and using the model. That is, the user can not readily comprehend the final rules that the neural network models acquire. We propose a genetic algorithms (GAs) approach in this study and illustrate how GAs can be applied to corporate failure prediction modeling. An advantage of GAs approach offers is that it is capable of extracting rules that are easy to understand for users like expert systems. The preliminary results show that rule extraction approach using GAs for bankruptcy prediction modeling is promising.

  • PDF

Application of Random Over Sampling Examples(ROSE) for an Effective Bankruptcy Prediction Model (효과적인 기업부도 예측모형을 위한 ROSE 표본추출기법의 적용)

  • Ahn, Cheolhwi;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.525-535
    • /
    • 2018
  • If the frequency of a particular class is excessively higher than the frequency of other classes in the classification problem, data imbalance problems occur, which make machine learning distorted. Corporate bankruptcy prediction often suffers from data imbalance problems since the ratio of insolvent companies is generally very low, whereas the ratio of solvent companies is very high. To mitigate these problems, it is required to apply a proper sampling technique. Until now, oversampling techniques which adjust the class distribution of a data set by sampling minor class with replacement have popularly been used. However, they are a risk of overfitting. Under this background, this study proposes ROSE(Random Over Sampling Examples) technique which is proposed by Menardi and Torelli in 2014 for the effective corporate bankruptcy prediction. The ROSE technique creates new learning samples by synthesizing the samples for learning, so it leads to better prediction accuracy of the classifiers while avoiding the risk of overfitting. Specifically, our study proposes to combine the ROSE method with SVM(support vector machine), which is known as the best binary classifier. We applied the proposed method to a real-world bankruptcy prediction case of a Korean major bank, and compared its performance with other sampling techniques. Experimental results showed that ROSE contributed to the improvement of the prediction accuracy of SVM in bankruptcy prediction compared to other techniques, with statistical significance. These results shed a light on the fact that ROSE can be a good alternative for resolving data imbalance problems of the prediction problems in social science area other than bankruptcy prediction.

A GA-based Binary Classification Method for Bankruptcy Prediction (도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.

A Methodology for Bankruptcy Prediction in Imbalanced Datasets using eXplainable AI (데이터 불균형을 고려한 설명 가능한 인공지능 기반 기업부도예측 방법론 연구)

  • Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.65-76
    • /
    • 2022
  • Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.

A Neural Network Model for Bankruptcy Prediction -Domestic KSE listed Bankrupted Companies after the foreign exchange crisis in 1997 (인공신경망을 이용한 기업도산 예측 - IMF후 국내 상장회사를 중심으로 -)

  • Jeong Yu-Seok;Lee Hyun-Soo;Chae Young-Il;Suh Yung-Ho
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.655-673
    • /
    • 2004
  • This paper is concerned with analysing the bankruptcy prediction power of three models: Multivariate Discriminant Analysis(MDA ), Logit Analysis, Neural Network. The after-crisis bankrupted companies were limited to the research data and the listed companies belonging to manufacturing industry was limited to the research data so as to improve prediction accuracy and validity of the model. In order to assure meaningful bankruptcy prediction, training data and testing data were not extracted within the corresponding period. The result is that prediction accuracy of neural network model is more excellent than that of logit analysis and MDA model when considering that execution of testing data was followed by execution of training data.

  • PDF

SVM based Bankruptcy Prediction Model for Small & Micro Businesses Using Credit Card Sales Information (신용카드 매출정보를 이용한 SVM 기반 소상공인 부실예측모형)

  • Yoon, Jong-Sik;Kwon, Young-Sik;Roh, Tae-Hyup
    • IE interfaces
    • /
    • v.20 no.4
    • /
    • pp.448-457
    • /
    • 2007
  • The small & micro business has the characteristics of both consumer credit risk and business credit risk. In predicting the bankruptcy for small-micro businesses, the problem is that in most cases, the financial data for evaluating business credit risks of small & micro businesses are not available. To alleviate such problem, we propose a bankruptcy prediction mechanism using the credit card sales information available, because most small businesses are member store of some credit card issuers, which is the main purpose of this study. In order to perform this study, we derive some variables and analyze the relationship between good and bad signs. We employ the new statistical learning technique, support vector machines (SVM) as a classifier. We use grid search technique to find out better parameter for SVM. The experimental result shows that credit card sales information could be a good substitute for the financial data for evaluating business credit risk in predicting the bankruptcy for small-micro businesses. In addition, we also find out that SVM performs best, when compared with other classifiers such as neural networks, CART, C5.0 multivariate discriminant analysis (MDA), and logistic regression.

Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory (퍼지이론과 SVM 결합을 통한 기업부도예측 최적화)

  • Choi, So-Yun;Ahn, Hyun-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.3
    • /
    • pp.155-165
    • /
    • 2015
  • Bankruptcy prediction has been one of the important research topics in finance since 1960s. In Korea, it has gotten attention from researchers since IMF crisis in 1998. This study aims at proposing a novel model for better bankruptcy prediction by converging three techniques - support vector machine(SVM), fuzzy theory, and genetic algorithm(GA). Our convergence model is basically based on SVM, a classification algorithm enables to predict accurately and to avoid overfitting. It also incorporates fuzzy theory to extend the dimensions of the input variables, and GA to optimize the controlling parameters and feature subset selection. To validate the usefulness of the proposed model, we applied it to H Bank's non-external auditing companies' data. We also experimented six comparative models to validate the superiority of the proposed model. As a result, our model was found to show the best prediction accuracy among the models. Our study is expected to contribute to the relevant literature and practitioners on bankruptcy prediction.

Genetic Algorithm based Hybrid Ensemble Model (유전자 알고리즘 기반 통합 앙상블 모형)

  • Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.