• 제목/요약/키워드: Bankruptcy Forecasting

검색결과 18건 처리시간 0.025초

인공신경망을 이용한 소비자 선택 예측에 관한 연구 (A study on forecasting of consumers' choice using artificial neural network)

  • 송수섭;이의훈
    • 한국경영과학회지
    • /
    • 제26권4호
    • /
    • pp.55-70
    • /
    • 2001
  • Artificial neural network(ANN) models have been widely used for the classification problems in business such as bankruptcy prediction, credit evaluation, etc. Although the application of ANN to classification of consumers' choice behavior is a promising research area, there have been only a few researches. In general, most of the researches have reported that the classification performance of the ANN models were better than conventional statistical model Because the survey data on consumer behavior may include much noise and missing data, ANN model will be more robust than conventional statistical models welch need various assumptions. The purpose of this paper is to study the potential of the ANN model for forecasting consumers' choice behavior based on survey data. The data was collected by questionnaires to the shoppers of department stores and discount stores. Then the correct classification rates of the ANN models for the training and test sample with that of multiple discriminant analysis(MDA) and logistic regression(Logit) model. The performance of the ANN models were betted than the performance of the MDA and Logit model with respect to correct classification rate. By using input variables identified as significant in the stepwise MDA, the performance of the ANN models were improved.

  • PDF

Predicting Financial Distress Distribution of Companies

  • VU, Giang Huong;NGUYEN, Chi Thi Kim;PHAM, Dang Van;TRAN, Diu Thi Phuong;VU, Toan Duc
    • 유통과학연구
    • /
    • 제20권10호
    • /
    • pp.61-66
    • /
    • 2022
  • Purpose: Predicting the financial distress distribution of an enterprise is important to warn enterprises about their future. Predicting the possibility of financial distress helps companies have action plans to avoid the possibility of bankruptcy. In this study, the author conducted a forecast of the financial distress distribution of enterprises. Research design, data and methodology: The forecasting method is based on Logit and Discriminant analysis models. The data was collected from companies listed on Vietnam Stock Exchange from 2012 to 2020. In which there are both companies suffer from financial distress and non-financial distress. Results: The forecast analysis results show that the Logistic model has better predictability than the Discriminant analysis model. At the same time, the results also indicate three main factors affecting the financial distress of enterprises at all three research stages: (1) Liquidity, (2) Interest payment, and (3) firm size. In addition, at each stage, the impact of factors on financial distress differs. Conclusions: From the results of this study, the author also made several recommendations to help companies better control company operations to avoid falling into financial distress. Adjustments to current assets, debt, and company expansion considerations are the most important factors for companies.

시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측 (Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.155-170
    • /
    • 2018
  • 기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.

생존분석 기법을 이용한 기업 도산 예측 모형

  • 남재우;이회경
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.40-43
    • /
    • 2000
  • In this paper, we investigate how the average survival time of listed companies in the Korea Stock Exchange (KSE) are affected by changes in macro-economic environment and covariate vectors which show peculiar financial characteristics of each company. We also apply the survival analysis approach to the dichotomous firm failure prediction and the results show a similar pattern of forecasting performance using the existing dichotomous prediction techniques. These findings suggest that, when we consider a bankruptcy model under a certain economic event, the survival approach can be a useful alternative to the existing dichotomous prediction methods since the approach provides estimation of average survival time as well as simple binary prediction.

  • PDF

다수의 분류 기법의 예측 결과를 결합하기 위한 혼합 정수 계획법의 사용 (Aggregating Prediction Outputs of Multiple Classification Techniques Using Mixed Integer Programming)

  • Jo, Hongkyu;Han, Ingoo
    • 지능정보연구
    • /
    • 제9권1호
    • /
    • pp.71-89
    • /
    • 2003
  • 경영 분류 문제에 대한 많은 연구들은 여러가지 기법들간의 성과 비교에 대한 것이었지만, 각각의 연구들마다 가장 좋은 기법이 어떤 것인가에 대해서는 상이한 결론을 내고 있다. 다수의 분류 기법 중에서 가장 좋은 것을 사용하는 방법에 대한 대안으로,분류 기법을 통합하여 성과를 향상시키는 방법이 있다. 본 연구에서는 개별 분류 기법의 결과를 선형 결합하여 예측력을 높이는 방법을 제시하였다. 최 적 선형 결합 가중치를 계산하기 위해 혼합 정수 계 획 법을 사용하였다. 목적 함수로 사용한 오분류 비용의 최소화에서 오분류 비용은 부도 기업을 모형에서 정상으로 예측한 오류와 정상기업을 모형에서 부도 기업으로 예측한 오류의 합으로 정의하였다. 문제 풀이 과정을 단순화하기 위하여 본 논문에서는 절사점 (cutoff value)을 고정하였고, 경계 함수 (threshold function)를 배제하였다. 정수계획법의 계산을 위해 branch 8, bound 방법을 사용하였다. 선형 결합에 의한 모형의 예측력이 개별 기법에 의해 구축된 모형의 예측력을 상회하였고, 그 차이가 통계적으로도 유의하였다.

  • PDF

MODELING ACCURATE INTEREST IN CASH FLOWS OF CONSTRUCTION PROJECTS TOWARD IMPROVED FORECASTING OF COST OF CAPITAL

  • Gunnar Lucko;Richard C. Thompson, Jr.
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.467-474
    • /
    • 2013
  • Construction contactors must continuously seek to improve their cash flows, which reside at the heart of their financial success. They require careful planning, analysis, and optimization to avoid the risk of bankruptcy, remain profitable, and secure long-term growth. Sources of cash include bank loans and retained earnings, which are conceptually similar in that they both incur a cost of capital. Financial management therefore requires accurate yet customizable modeling capabilities that can quantify all expenses, including said cost of capital. However, currently existing cash flow models in construction engineering and management have strongly simplified the manner in which interest is assessed, which may even lead to overstating it at a disadvantage to contractors. The variable nature of cash balances, especially in the early phases of construction projects, contribute to this challenging issue. This research therefore extends a new cash flow model with an accurate interest calculation. It utilizes singularity functions, so called because of their ability to flexibly model changes across any number of different ranges. The interest function is continuous for activity costs of any duration and allows the realistic case that activities may begin between integer time periods, which are often calendar months. Such fractional interest calculation has hitherto been lacking from the literature. It also provides insights into the self-referential behavior of compound interest for variable cash balances. The contribution of this study is twofold; augmenting the corpus of financial analysis theory with a new interest formula, whose strengths include its generic nature and that it can be evaluated at any fractional value of time, and providing construction managers with a tool to help improve and fine-tune the financial performance of their projects.

  • PDF

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.

Support Vector Regression에서 분리학습을 이용한 고객의 구매액 예측모형 (The Prediction of Purchase Amount of Customers Using Support Vector Regression with Separated Learning Method)

  • 홍태호;김은미
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.213-225
    • /
    • 2010
  • 본 연구에서는 기업의 마케팅 프로모션에 따른 반응고객의 구매액 예측을 위한 방법을 제시하고 SVR의 효과적인 학습방법을 제시하였다. 프로모션에 의한 고객의 구매액을 기반으로 고객을 5등급으로 등급화하고 각 등급 내에서 SVR을 적용하여 고객의 구매액을 예측하였다. 본 연구에서 제안하는 예측된 고객의 등급 내에서 고객 구매액을 예측하는 분리데이터 학습법이 프로모션에 반응한 모든 고객을 대상으로 구매액을 예측하는 전체데이터 학습법보다 높은 예측성과를 보여주었다. 일반적으로 세분화된 고객집단을 하나의 집단으로 보고 동일한 마케팅 전략을 제시하나 본 연구를 통해 구매액에 따라 등급화 된 고객의 등급 내에서 다시 고객의 거래 구매액을 예측하여 동일한 집단 내에서도 차별화된 마케팅 전략을 제시할 수 있는 기반을 제시하였다. 즉 동일한 등급에서도 고객 구매액에 따라 고객의 우선순위를 정할 수 있으며, 이는 마케팅 담당자가 프로모션을 제시할 고객을 선정할 때 유용한 정보로 활용될 수 있다.