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ABSTRACT: Construction contactors must continuously seek to improve their cash flows, which reside at the heart of 
their financial success. They require careful planning, analysis, and optimization to avoid the risk of bankruptcy, remain 
profitable, and secure long-term growth. Sources of cash include bank loans and retained earnings, which are 
conceptually similar in that they both incur a cost of capital. Financial management therefore requires accurate yet 
customizable modeling capabilities that can quantify all expenses, including said cost of capital. However, currently 
existing cash flow models in construction engineering and management have strongly simplified the manner in which 
interest is assessed, which may even lead to overstating it at a disadvantage to contractors. The variable nature of cash 
balances, especially in the early phases of construction projects, contribute to this challenging issue. 

This research therefore extends a new cash flow model with an accurate interest calculation. It utilizes singularity 
functions, so called because of their ability to flexibly model changes across any number of different ranges. The interest 
function is continuous for activity costs of any duration and allows the realistic case that activities may begin between 
integer time periods, which are often calendar months. Such fractional interest calculation has hitherto been lacking from 
the literature. It also provides insights into the self-referential behavior of compound interest for variable cash balances. 
The contribution of this study is twofold; augmenting the corpus of financial analysis theory with a new interest formula, 
whose strengths include its generic nature and that it can be evaluated at any fractional value of time, and providing 
construction managers with a tool to help improve and fine-tune the financial performance of their projects. 
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1. INTRODUCTION 

Construction contractors provide professional services 
in a competitive market with the goal of being profitable. 
They must therefore plan and continuously control how 
each project, and indeed each portion thereof, contributes 
to the overall financial performance of their company. 

The remainder of this paper is organized as follows: It 
reviews the importance of modeling cash flows, describes 
interest approximations that were used by prior studies, 
defines singularity functions and provides principles for 
their use, outlines how they can model cash outflows and 
inflows, derives exact interest for variable balances, and 
applies them to an example project from the literature. 
 

2. IMPORTANCE OF CASH FLOWS 

Cash flows are extremely important for companies – 
cash inflows are the financial ‘fuel’ to remain successful 
in the business environment, whereas cash outflows are 

the respective consumption. As in this analogy, shortfalls 
can endanger the survival of the enterprise [1], even if its 
productive operations, in this case creating build facilities, 
are performed as planned and at perfect quality. Means of 
bridging any temporary gaps between cash outflows and 
inflows are therefore a fundamental component of sound 
financial management, specifically obtaining financing, 
either from capital that is held by the company itself, or 
by obtaining funds from commercial banks. In both cases, 
financing fees are incurred from foregoing an opportunity 
for profitable investment in the former case or from being 
charged interest by the bank in the latter. In this paper, the 
differences between these scenarios will not be examined 
further; rather, the central question is raised of how to 
properly model such interest in cash flow calculations for 
construction projects to gain an accurate yet also flexible 
expression. Prior approaches fell short of this goal. It is 
necessary to review their assumptions and limitations on 
interest, develop new equations for interest, and integrate 
them into a comprehensive model of cash flows over time. 
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3. INTEREST APPROXIMATIONS 

Numerous previous studies that model cash flows have 
explicitly included interest. However, the discrete nature 
of their approaches required periodic summations [2] to 
determine the actual balances at the end of each period 
when interest is assessed and charged. Moreover, interest 
is complex in the sense that the behavior of individual 
elements of a negative balance within periods is variable; 
activities that cause costs may begin or end at fractional 
points in time as measured in integer multiples of periods. 
Furthermore, equations for interest on variable (growing) 
balances, as opposed to constant amounts borrowed for 
part of periods or full periods, were completely lacking. 

For these reasons, all previous approaches from the 
literature on construction project management had to 
approximate interest in one of several different ways [3]: 
 

• End-of-Period Balance Approximation: The simplest 
but also the least desirable and most inaccurate of all 
approximations relies solely on the balance cend at the 
end of a period. This calculates financing fees as the 
interest rate i ·  cend, which grossly overstates its amount 
for most cash flow scenarios [3]. It effectively assumes 
that the entire end-of-period balance would have been 
borrowed since the beginning of the period, whereas a 
typical behavior is that costs will grow and accumulate 
throughout a period. It was applied only in few studies, 
e.g. a recent multi-objective optimization to minimize 
project duration and maximizing profit [4], a textbook 
[5], and an older study on initial cash flow estimates [6]. 

• Average of Growth Approximation: This is probably 
the most commonly used approximation, appearing in 
numerous studies on cash flow models [7], [8], [9]. It 
calculates interest into a two-component expression of 
interest on any balance cstart at the start of a period plus 
interest on the average growth that occurs during said 
period, i.e. on half of the additional difference (cend - 
cstart). The first component, including any previous 
financing fees, accrues interest over the entire period. 
But the second of these components is incorrect insofar 
as it ignores the concept of Time Value of Money. This 
is captured by Equation 1, whose amount c grows from 
now to the future at an interest rate i over a duration t. 

 

( )t

nowfuture icc +⋅= 1  (1) 

 
Assuming a linear growth from cstart to cend, its error lies 

in the fact that the average additional balance of ½ ·  (cend 
– cstart) is reached after exactly half of the period duration, 
but a much larger portion of the actual interest accrues in 
the second half of the period rather than in the first half. 
A simplified calculation shows this effect: Assume that a 
balance of $100 is borrowed linearly over a period with a 
duration of one time unit. Splitting this amount into four 
equal portions of $25, one could approximate the interest 
as $25 that is borrowed from the first quarter until the 
period end, $25 from the second quarter to the period end, 
andsoforth. Taking the midpoint of a quarter as the single 
point in time where each incremental $25 is borrowed (i.e. 

at 0.125, 0.375, 0.625, and 0.875 period), for an assumed 
interest rate of 5% per period the total interest could be 
calculated by adding the separate components as follows: 

$25 ·  (1.050.125 - 1) + $25 · (1.050.375 - 1) + $25 · 
(1.050.625 - 1) + $25 ·  (1.050.875 - 1) = $0.1529 + $0.4616 + 
$0.7741 + $1.0904 = $2.4790. In other words, the first 
half of the period causes only $0.6146 or 24.79% of the 
interest, but the second half causes $1.8645 or 75.21% of 
the interest of $2.4790; over three-quarters of the interest 
is caused by the later borrowing. Compare this with the 
case that the Average of Growth Approximation implies: 

Borrowing $50 for the entire period will cause an 
interest of $50 · (1.05)1 = $2.50, which overcharges the 
client, in this case the (sub)contractor in favor of the bank. 
Singularity functions provide the capability to derive a 
better model for such financing fees in cash flows. Their 
definition and uses are explained in the following sections. 
 

4. SINGULARITY FUNCTIONS 

4.1 Definition of Case Distinction 

The definition of singularity functions comprises three 
elements that must be known to create a valid expression: 
The intensity of a phenomenon (its strength s), where it 
begins on the x-axis (its cutoff a), and the nature of its 
behavior (its exponent n) [10]. The elements are captured 
in Equation 2, which is the ‘basic term’ for all models. 
 

( )
( ) 2

10

Case

Case

axif

axif

axs
axsxy n

n





≥

<

−⋅
=−⋅=  (2) 

 
The case distinction of the pointed bracket operator 

[11] results in a value of zero for Case 1, meaning that the 
basic term has not become ‘active’ yet, and a regularly 
evaluated function value in Case 2 for all x-values at and 

to the right of a. The use of the ≥ symbol in Case 2 causes 
Equation 2 to be right-continuous and defined for all x-
values. As such, it generalizes the traditional algebraic 
functions, because they can be ‘switched on’ only when 
needed, rather than exhibiting a single behavior across the 
entire spectrum from minus infinity to plus infinity. This 
ability makes them ideal to model any complex behaviors 
of phenomena that change between multiple segments 
(ranges with starts a1, a2, ...) along the x-axis. In the spirit 
of ‘customizing’ mathematical expressions to fit a user’s 
needs, it is possible that the simple exponential function 
within the case distinction provided by Equation 2 could 
be modified or expanded to more complex expressions. 
 
4.2 Rules for Calculations 

Several rules should be followed for the approach of 
Equation 2 to ensure accurate calculations. Its operator is 
additively combined into complete singularity functions, 
i.e. a singularity functions refers to the sum of multiple 
basic terms. Three principles should be applied after each 
calculation step to maintain the structure and clarity [12]: 
 

• Sorting Principle: Basic terms of the form of Equation 
2 should be sorted in a hierarchical order from left to 
right, for example from lowest to highest a, then from 

468



highest to lowest n, and from highest to lowest s. This 
is analogous to the standard notation convention for 
polynomial functions, e.g. y(x) = 2 ·  x2 + 3 ·  x1 + 4 · x0. 

• Simplification Principle: Basic terms with the identical 
cutoff a and exponent n, but different strengths s can 
and should be simplified by adding their s and writing 
the expression as a single basic term so that singularity 
functions when written out are not unnecessarily long. 

• Superposition Principle: Multiple basic terms that have 
different a or n capture different aspects of a behavior. 
In other words, complex behaviors (shapes of y(x)) can 
be modeled by overlaying geometrically simpler shapes, 
in analogy to discretizing with elements like rectangles 
or triangles. Note that the number of basic terms that a 
singularity function may contain is unlimited, so that at 
least theoretically phenomena of any complexity can be 
described, even if the computational effort would grow. 

 
The name of singularity functions refers to their unique 

ability of capturing only those points in time or locations 
where changes occur, i.e. singularities in the otherwise 
regular behavior of a mathematical phenomenon. This 
bears a passing resemblance to discrete event simulation, 
which describes only the events (changes in activity or 
resource status), and omits any periods in between [13]. 

For exponent n = 0, Equation 2 is a step function with a 
constant value (where s denotes the step height) from a 
onward. For n = 1, it becomes a slope function with a 
fixed rate of growth (where s takes on a different meaning 
of being the slope defined as rise over run) from a onward. 
Higher exponents would have yet different meanings of s, 
respectively. It is therefore important to always derive the 
intended meaning of the strength s from the exponent n. 

Importantly, singularities as modeled by the singularity 
functions can be discontinuities of any exponential order, 
e.g. sudden vertical steps, horizontal periods of no growth 
(achieved by subtracting the influence of any terms with n 

≥ 1), or positive or negative changes in slope (bends). In 
summary, the singularity functions are thus capable to 
accurately track profiles y(x) of any shape over the x-axis. 
 
4.3 History and New Use in Project Management 

First introduced to the project management audience as 
a new method for analyzing linear schedules [14], [12], 
singularity functions have actually a long history in the 
field of structural engineering, where they provided an 
efficient mathematical approach to calculate shear and 
moment distributions along structural members [15], [16]. 
While more well-known by names based on publications 
by Föppl [17] and Macaulay [18] in the early 1900s, 
origins can be traced back further to Clebsch [19], [20]. 

Singularity functions continue to be developed for new 
applications in construction project management by this 
author. They include an algorithm to calculate the critical 
points that compose a continuous critical path through 
linear schedules based on the sequential activity segments 
and their buffers [14]; identifying several types of float 
within the area of the work-time coordinate system of 
linear schedules [12]; deriving profiles of resource usage 
directly from the underlying schedule, based on the needs 
of each activity [21]; and expressing various elements of 

cash flows by transforming cost functions into billings 
and payments in their chronological sequence [22]. The 
following section provides details on such modeling steps. 

Another new application is expressing a recommended 
amount of cost contingency from an owner’s point of 
view as a singularity function. It decreases as the amount 
and accuracy of information about the project increases 
throughout its design and construction phases; uncertainty 
is reduced particularly once firm bids are received [23]. 
 

5. OVERALL CASH FLOW MODEL 

4.1 Cost Function 
A cost function follows the model of Equation 2 and 

introduces a unit cost as the slope. This essentially makes 
the assumption that costs for a specific activity occur in a 
linearly growing manner or can be approximated as such. 
This assumption is in alignment with that of most studies 
on cash flow models, e.g. [24], [25], and [26], but such 
models were composed of discrete elements, rather than 
an integrated model as singularity function make possible. 

Any such cost has the form of either Equation 3, if it is 
a single cost c1 being incurred at a point in time a1; or 
Equation 4, if it is a unit cost c2 that grows throughout a 
duration d2 from its start a2s to its finish a2f. Either of 
them can be tied to activities (direct cost) or occur on its 
own (indirect cost), e.g. overhead, in which case it is 
treated as if it is caused by a separate ‘office activity’ that 
extends through the duration of the entire project. Note 
that Equation 4 contains two basic terms [27]: One to add 
the cost slope c2 and another to subtract it again. 
Otherwise, the cost c2 would incorrectly grow infinitely. 
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4.2 Billing Function 

As mentioned, activity costs on construction projects 
are modeled with Equation 4, which assumes – simplified 
– that individual purchases of materials, paying wages 
and benefits, and expenses from either renting or owning 
equipment occur approximately randomly distributed in 
time. Further research is planned to refine this working 
assumption. However, any discrepancy from it will likely 
remain small, because in the next step, converting costs 
into bills, all costs that are incurred at any time within a 
period are accumulated into a single bill at the end of said 
period. The mathematical operator that accomplishes this 
is a so-called ‘floor’ operator that rounds any fractional 

values down to integers and is written as   [28]. When 
applied not to an individual value but to the x-value of a 
growing phenomenon y(x), it will convert it into a stepped 
function. Equation 5 provides its general form, whose 
only difference to Equation 4 is that its argument x is 
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always rounded down to integers – only when exceeding 
the next full integer will the value of the pointed bracket 
change, giving the desired stepping effect. This assumes 
that the periods for billing occur at integer points on the 
time axis, the x-axis. Of course, the bill would not be 
complete without increasing the cost by the profit margin 
p and any other adjustments as a factor per Equation 6. 
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4.3 Payment Function 

All that remains to convert a billing function into a 
payment function [22] is determining the delay b that will 
occur between the two events, and applying any further 
adjustments to its monetary amount. For the former, a 
typical assumption is 30 days, or one calendar month [29], 
but durations can reach even several months, especially 
for subcontractors [30], [31], as payments are transferred 
from owner to general contractor, and finally passed on, 
each of whom has a financial incentive (earning interest) 
to receive funds quickly but disburse them only slowly. 

Equation 7 thus adds a delay b to the start and finish 
cutoffs a2s and a2f, effectively shifting the entire stepped 
billing function to the right on the time axis. Of course, 
any profit p requested by the (sub)contractor and any 
retainage r withheld by the owner [32] are included as 
increasing and decreasing factors in the final Equation 8. 
Further elements at this stage may be individual inflows 
or outflows from bonuses or penalties, which simply have 
the already-familiar form of Equation 3, and conditionally 
depend on certain events happening or not happening. A 
binary decision variable v can be introduced as a factor to 
achieve this capability, but is excluded here for brevity. 
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4.4 Financing 

Following the superposition principle, the cash flows 
for an overall construction project can now be derived as 
the sum of all cost functions (cash outflows, Equation 4) 
plus all payment functions (cash inflows, Equation 8). 
Any negative balance that occurs at any time throughout 
the project duration must be financed. Two simplifying 
assumptions are made here, (1) that the entire cash flow 
profile can be attributed to a single corporate entity, e.g. 
one subcontractor, or one contractor, when in reality the 
overall cash flow is a composite of many smaller ones. 
And (2) that there exists no difference between interest 
rates for financing by a loan from a lender (bank) versus 
using cash holdings of the company (retained earnings) 
and therefore foregoing earning investment interest [3]. In 

other words, the source of temporary cash is considered 
irrelevant for the purpose of interest analysis in this paper. 
 

6. MODELING INTEREST ACCURATELY 

The difference between the sum of all inflows minus 
the sum of all outflows for any given point in time on the 
x-axis is the financing need of the specific cash flow 
profile. In a separate step, financing fees – interest – must 
be assessed in regular intervals, typically at the end of 
each period. These fees are individual cash outflows of 
the type of Equation 3; however, to accurately determine 
their amount one must consider the exact behavior of cash 
flows. It is feasible to decompose any overall cash flow 
profile into the contribution of each individual sequence 
of costs, billings, and payment. A complicating factor is 
the fact that activities can start and finish at any fractional 
point in time [33], not only on integer periods. Progress 
payments (and bonuses or penalties), on the other hand, 
are assumed to always occur on integer periods in this 
initial model. Further research may generalize the timing 
of all elements further. Interest on a linearly growing 
balance per Equation 4 must now consider the Time Value 

of Money. Decomposing such a growth into incremental 
steps is a mathematical series [3] per Equation 9, where 
the cost within a single period is c3 = c2 / (d2 ·  1 period) 
and k is the number of increments. Each of its k terms is a 
small cost stream on which interest accrues, yet each one 
over a slightly different portion of the period. They are 
sorted chronologically, from 1/k-th of the cost that 
accrues interest over the entire period to 1/k-th that is 
borrowed for almost no duration whatsoever. The basic 
term in Equation 9 indicates that the interest (excluding 
the balance) is calculated at the end of the first period. 
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Solving it for the general case requires that k becomes 

very large. Also, the anticipated fractional start and finish 
dates for activities must still be implemented. Fortunately, 
this only reduces the length of the series. If an activity 
starts at the fractional point in time s during a period, its 

interest streams are cropped to growing only over  s  - s 
per Equation 10. On the other hand, if it finishes at a 
fractional f, its streams will have durations only between 

1 and  f  - f - 1/k per Equation 11. Note that the ‘ceiling’ 
operator [28] ensures that the interest is assessed at the 
next integer time, i.e. the end of the period that directly 
follows a fractional point in time when borrowing ended. 
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Equations 9 through 11 describe how fractional starts, 

complete periods, and fractional finishes incur interest. 
Equations 10 and 11 are valid in a single fractional period. 
To combine them into a single mathematical function, it 
must be considered that the interest is assessed exactly at 
an integer end-of-period. For any activity that extends 
into more than one discrete period, any interest from such 
integer point in time itself will be compounded, i.e. will 
cause a further interest stream. All these interest streams, 
whether from the growing balance itself or compounding 
interest, are added as the total interest at the last end-of-

period, which is the rounded up finish  f  of the activity. 
An activity of duration d can have up to three distinct 

segmental components over time: A fractional start period 

of ds =  s  - s, one or multiple full periods in its middle, 

and a fractional finish period of df = f -  f . The number 
of full periods is dp = d - ds - df. These definitions are now 
applied to properly accumulating Equations 9 through 11. 
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Of course, if dp = 1, then only one full period term is 

used for its compounding, and if dp = 0 it is omitted. A 
simplification for Equation 12 is the fact that the series of 
exponential interest terms as they appear in the full period 
terms are an annuity, a series of periodically compounded 
payments, which can be calculated with the well-known 
Equation 13, where A is the repeated annuity payment, n 
is the number of periods of compounding, and FV is the 
future value. The only adjustment that must be made is to 
ensure that the annuity extends from 1 to dp as is found in 
Equation 12. Equation 14 can thus be implemented to 
create the shorter full period term of the new Equation 15. 
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To remove the variable k from the three components of 
Equation 15, i.e. from the underlying Equations 9 through 
11, requires making k very large and examining whether 
or not they then converge to any known expression. It has 
recently been solved by Lucko and Thompson [3], who 
let k approach infinity so that the incremental cost c3/k 
that causes these many interest streams approaches zero; 
ultimately, it models a ‘triangular’ balance of debt within 
a single period. The solution of such an ‘infinitesimal’ 
series of annuities converges to the interest divided by the 
natural logarithm of one plus the interest per Equation 16. 
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Cases of start-fractional and finish-fractional streams of 

k incremental cost elements are solved analogously, here 
within a single period, incorporating the aforementioned 
fractional start or finish periods ds or df, respectively. The 
length of compounding the incremental streams for start-
fractional ranges from ds to 0 and for finish-fractional it 
ranges from 1 to 1 - df, in both cases measured to their 
rounded-up integer period when interest is assessed. 
Shortening the necessary derivation steps of the series 
development for brevity, the numerators of Equations 17 
and 18 are thus curtailed to the difference of exponential 
terms ranging from ds to 0 or from 1 to 1 - df, respectively. 
The cutoffs of 1 are used in these generic expressions as a 
reminder that they only evaluate a single fractional period. 
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Compiling these equations into Equation 15 creates the 

new Equation 19. This comprehensive new expression for 
an activity with any fractional start and/or finish plus any 
number of complete periods gives the exact total interest, 

which is assessed at the integer period  f  that directly 
follows its finish f. The first term accrues interest from its 

 s  to  f , the second – for full periods – over a duration 
that ranges from the number of full periods dp plus one (a 
period that may contain another fractional finish) to just 
one, in analogy to the annuity of Equation 14, the third 
term accrues interest only over a fractional duration 1 – df. 
If the second term has a duration of dp = 0, i.e. no full 
periods, its round bracketed part returns 1, yet applying 

the pointed bracket operator of singularity functions 〈 〉 to 
dp itself ensures that the entire second term is set to zero. 
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7. EXAMPLE 

An example from the literature [5] is used to illustrate 
the functioning of the new approach of modeling costs 
and payments that are derived from them with singularity 
functions, plus the desired accurate interest. Note that the 
aforementioned billing function is only an intermediate 
step to derive the final payments, but otherwise does not 
contribute to the balance behavior of the final cash flows. 

The example consists of a small project with four 
activities, A, B, C, and D. Table 1 provides their start and 
finish dates in the time unit of periods and their unit costs 
and total costs. The total project duration is 4.0 periods. 
This means that with the delay b to receive payments, the 
final payment is actually not received until 5.0 periods. 
Additional inputs are $5,000 per period from overhead as 
indirect costs, which can be modeled as another activity. 

A profit margin of p = 25% and a retainage of r = 10% 
are used; the latter only applied until the project exceeds 
$125,000 in constructed value [5], i.e. it is only withheld 
as an escrow by the owner only in periods one and two, 
not later. The total project cost to the contractor thus is 
$200,000 but its value, including profit, is $250,000. Note 
the fractional start of activity C. Interest is 1% per period. 
 
Table 1. Activity List with Costs 
 

Activity Start Dur. Finish Unit Cost Total Cost 

A 0.0 2.0 2.0 $025,000 $050,000 

B 1.0 2.0 3.0 $020,000 $040,000 

C 1.5 1.5 3.0 $040,000 $060,000 

D 2.0 2.0 4.0 $015,000 $030,000 

Overhead 0.0 4.0 4.0 $005,000 $020,000 

 
For brevity, only activity C is modeled with singularity 

functions in the following sections, all other equations are 
completely analogous. First, Equation 4 is applied for the 
costs of activity A in Equation 20. Then it is accumulated 
in the stepped billing function by applying Equations 5 
and 6 to give Equation 21, and finally shifted by the delay 
per Equations 7 and 8 until the payment is received in 
Equation 22. Profit and retainage are directly applied to 
the respective monetary values in the various equations. It 
is easy at this stage, but omitted for brevity, to include 
additional variables in the cutoffs of the basic terms of 
any activity equation [21], e.g. for duration-dependent 
costs, or if it were modeled that activities may be delayed 
or shift within their float to different starts and/or finishes. 
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Subtracting Equation 22 from Equation 20 gives the 

individual contribution that C makes to the overall profile 
of cash flows. Analogous calculations can be made for all 
other activities of Table 1. Equations 23 and 24 give the 
cost function and payment function for the entire project. 
The upper two curves of Figure 1 show these two 
functions: Costs have the typical S-shape of construction 
expenses over time; payments have a delayed step-shape. 
 

 
Figure 1. Cash Flow Profile for Example ( [5], [27], [34]) 
 

Terms of 〈x - a〉1 are equivalent to a series of repeated 
steps of constant height and are equivalent to arduously 

modeling multiple separate steps 〈x - a〉0 at their cutoffs a. 
Equation 23 has also been simplified by adding monetary 
values at identical cutoffs, whose individual contributions 
are indicated by the indexed activity names. The last term 
of Equation 24 includes the released retainage, which is 
10% of billings that were paid at times x = 2 plus x = 3, 
i.e. 0.1 ·  ($50kA + $20kB + $20kC + 2 ·  $5kOH) = $12.5k. 
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Prior research on modeling cash flows with singularity 

functions was limited by not being able to distinguish 
several events that all occur at the end-of-period. It was 
therefore suggested [22] to model the sequence of timings 
for costs and payments explicitly by delaying the cutoffs 
a of payments by an incremental duration ε so that cash 
outflows precede cash inflows at the end of each month, 
which is a conservative assumption. However, as interest 
is yet another cash outflow, the proper sequence at the 
end-of-period should better be as follows: Costs occur at 
a, interest is added at a + ε, and payments reduce the 
negative balance at a + 2 · ε. Mathematically the value of 
ε should be non-zero so that a clear distinction between 
the three points in time at the end-of-period is possible, 
yet also small enough that the monetary balances remain 
the same to the dollars and cent level of accuracy. In this 
paper the ε and 2 ·  ε are not shown in the equations for 
simplicity, yet computer implementations should consider 
incorporating them to avoid the potential coding problem 
of equations returning more than one y(x) for any given a. 

To finance activity C, the difference between Equations 
22 and 20 is examined in detail. As it has a fractional start 
plus one period, Equation 25 that models how C accrues 
interest contains components of both Equations 10 and 9. 
In a sense, interest is self-referential, as it is compounded 
at the periodic factor of 1.01 once its exact amount has 
been calculated per the newly derived Equations 16 to 18. 
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However, the payments from Equation 22, $22.5k at t = 

3 periods (billed $25k less retainage of $2.5k) and $50k at 
t = 4 periods reduces the subsequent balance that earns 
interest. These constant amounts need to be brought from 
their respective different cutoffs to the common cutoff a, 
for the example of C this is selected as receiving its last 
payment at t = 4. Equation 26 therefore compounds all 
earlier and discounts all later payments, whose amounts 
are captured by Equation 22 to this common point in time. 
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The value of C at t = 4 is - $61,054.51 + $75,200.25 = 

$14,145.74, or compounded further to the project finish at 
t = 5, its contribution to the overall value of the project is 
$14,287.20. Values for the cash flows with exact interest 
can be obtained analogously for the remaining activities, 
but are omitted here for brevity. Of course, the simplified 
nature of this example does not give full justice to the real 
challenges of cash flow management. Further research is 
needed to fully adapt its analytical potential to practice. 
 

8. CONCLUSIONS 

This paper has presented some of the powerful abilities 
of singularity functions for modeling financial processes, 
here the cash inflows and outflows and interest that arises. 
Its contribution is two-fold, it has derived a flexible new 
expression to calculate interest exactly by considering the 
variable balance, rather than resorting to approximations 
as in prior studies. It also enables integrated modeling of 
financial phenomena, which can be connected with other 
aspects of project management, e.g. scheduling and/or 
resource utilization and their various constraints, and thus 
can help construction managers in their decision-making 
to improve the financial performance in a holistic manner. 
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