• Title/Summary/Keyword: Bang-bang Controller

Search Result 129, Processing Time 0.027 seconds

Sliding Mode Control with Target Variation Rate of Lyapunov Function for Seismic-Excited Structures (Lyapunov 함수의 목표 변화율을 이용한 가진된 건물의 슬라이딩 모드 제어)

  • 이상현;정진욱;민경원;강경수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • This paper presents sliding mode control(SMC) method using target variation rate of Lyapunov Function. SMC keeps the response of structure in sliding surface where structure is stable. It can design both linear controller and bang-bang controller. Linear control of previous research, however, can not make most of the performance of controller, because it is designed to satisfy the condition that the variation rate of Lyapunov function is minus. Also, in case of bang-bang controller, unnecessary large control force is generated. Presented method can utilize the capacity of controller efficiently by prescribing the target variation rate of Lyapunov function. Numerical simulation results indicate that the presented control methods can reduce the peak response larger than linear control, and it has control performance equivalent to bang-bang control.

  • PDF

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Design of Attitude Estimator and Controller for Multi-Purpose Satellite under Torque Disturbance (Torque Disturbance를 받는 다목적 위성의 자세추정기 및 제어기 설계)

  • Kim, Min-Sung;Choi, Wan-Shik;Oh, Hwa-Suk;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.113-118
    • /
    • 1996
  • Nonlinear Attitude Dynamic Equation for rigid-body satellite is derived and linearzed. Estimator using Kalman filter and controller are designed. Controller using LQR technique implemented on satellite under torque disturbance shows much better performance than those by using of Bang-Bang technique.

  • PDF

The Enlarged Sorting Algorithm of Tri - Point Comparsion Method for Bang - Bang Optimal Control (Bang - Bang 최적제어(最適制御)에 대한 3 점비교(点比校) 색출법(索出法)의 확장 알고리즘)

  • Kim, Joo-Hong;Jeong, In-Guk;Oh, Jun-Nam;Kim, Jin-Wan;Gho, Han-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.64-67
    • /
    • 1988
  • This paper proposes a algorithm to obtain a time-varing system parameters for the optimal controller. The proposed algorithm is enlarged from tile optimal sorting algorithm. It applies to Bang-Bang control and compares with CGD Method. We confirm that the proposed algorithm is excellent.

  • PDF

Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller (강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어)

  • Park, Young-Jin;Moon, Seok-Jun;Lim, Chae-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.

Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability (Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.

A Study on a Current Controller using TMS320F240 Microprocessor (TMS320F240 마이크로프로세스를 이용한 전류제어기 연구)

  • Bae, Jong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1380-1384
    • /
    • 2015
  • The DC motor has the strong characteristics in the speed response, the system parameter variations and the external influence and is used as the speed controller with its good starting torque in the distributing industry. However development of the Microprocessor which is for high speed switching program can make better control system. This paper introduce to design of the high-effective DC motor controller that is using Software Bang-Bang Program of Fuzzy algorithm and to verify a PI controller and a Fuzzy controller.

Improvement of Steady-state Error in a Driving System with Time-optimal Controller (최단시간 제어기를 이용한 구동장치의 정상상태 오차개선)

  • Lee, Seong-Woo;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.861-869
    • /
    • 2012
  • This paper presents a high performance position controller in a driving system using a time optimal control which is widely used to control driving systems to a desired reference position or velocity in minimum response time. The main purpose of this study is an improvement of transient response performance rather than steady-state response comparing with another various control strategies. In order to improve the performance of time optimal control, we tried to find the cause of the steady-state error in the driving system we have already made up and also suggest the newly modified type of time optimal control method in this paper.

Servo Motor Control by On-Off Controller with Hysterisis (히스테리시스를 갖는 온-오프 제어기에 의한 서보모터의 제어)

  • 김영복;김성환;양주호;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.85-95
    • /
    • 1991
  • All physical systems are nonlinear to some degree. The examples are relay, backlash, deadzone, saturation element and so on. In the linear control system design, it is useful method to restrict the nonlinearity to the linearity of system over the operation range. It is worth noting that nonlinearities may be intentionally introduced in to a system. A simple of an intentional non-linearity is the Bang-Bang controller which uses the On-Off relay. In this paper, an angular position servosystem made of a DC servomotor controlled by a microcomputer is discribed. Authors use two methods in the design of controller. The one is linear controller designed by the optimal feedback control theory only and the other is nonlinear controller designed by On-Off relay with optimal feedback control theory. To do the real time control, the controller is designed by using 16bit personal computer and A/D.D/A converter(12bit) is used in order to convert the signal. According to this way, the results from real time control are as follows. 2) Under the On-Off controller with hysterisis the influence of disturbance is considerably smaller than the linerar controller. 3) An increase in the sampling period has a destabilizing effect. 4)In the controller performance, the response time of the On-Off controller is longer than that of the linear controller. To close, we note that the On-Off controller with hysterisis is more attractive than the linear controller in the presence of the input limit.

  • PDF

A steering control method for wheel-driven mobile robot (휠구동방식의 자유이동로봇을 위한 조향제어방법)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.787-792
    • /
    • 1991
  • This paper proposes a steering control algorithm for non-holonomic mobile robots. The steering control algorithm is essential to navigate autonomous vehicles which employ comination of the dead reckoning and absolute sensor system such as a machine vison for detecting landmarks in order to estimate the current location of the mobile robot. The proposed algorithm is based on the minimum time BANG-BANG controller and curvature-continuity curve design method. In the BANG-BANG control scheme we introduce velocity/acceleration limiter to avoid any slippage of driving wheels. The proposed scheme is robot-independent and hence can be applied to various kinds of mobile robot or vehicles. To show the effectness of the proposed control algorithm, a series of computer simulations were conducted for two-wheel driven mobile robot.

  • PDF