• Title/Summary/Keyword: Band-filling effect

Search Result 13, Processing Time 0.025 seconds

Optoelectronics Properties of In0.27Ga0.73N/GaN Multi-Quantum-Well Structure (In0.27Ga0.73N/GaN 다중 양자우물 구조에 대한 광전기적 특성)

  • Park, Hun-Bo;Bae, In-Ho;Kim, Ki-Hong
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.489-492
    • /
    • 2007
  • Temperature and injection current dependence of elctroluminescence(EL) spectral intensity of the $In_{0.27}Ga_{0.73}N/GaN$ multi-quantum-well(MQW) have been studied over a wide temperature and as a function of injection current level. EL peaks also show significant broadening into higher photon energy region with the increase of injection current. This is explained by the band-filling effect. When temperature is slightly increased to 300 from 15 K, the EL emission peak showed red-blue-red shift. It can be explained by the carrier localization by potential fluctuation of multiple quantum well and band-gap shrinkage as temperature increase. It is found that a temperature-dependent variation pattern of the EL efficiency under very low and high injection currents show a drastic difference. This unique EL efficiency variation pattern with temperature and current is explained field effects due to the driving forward bias in presence of internal(piezo and spontaneous polarization) fields.

Shear Band Formation in Granular Materials with Different Particle Shapes behind a Retaining Wall

  • Zhuang, Li;Kim, Ukgie
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.39-47
    • /
    • 2013
  • Local deformations in back filling materials of two sands and one glass bead with different particle shapes behind a rigid retaining wall were studied. Two kinds of boundary conditions were compared: active wall translation and active rotation of the wall about its toe. Effect of the speed of active wall translation was also investigated. The digital image correlation method was used to analyze local deformation developments inside the materials. Test results showed that particle shape and density mainly influence the inclination angle and width of the shear band. The general shear band pattern is strongly dependent on the wall movement mode, while it was little influenced by particle shape. Within a limited range of wall speed in this study, shear band became wider and local deformation became larger with increase of wall speed.

Characteristics of Local Vibration Modes of the Aluminium Extruded Panels for Rail Road Vehicles (철도 차량용 알미늄 압출재의 국부진동 모드특성)

  • 김석현;장호식;김정헌
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Characteristics of the local vibration modes of an aluminium extruded panel are investigated by the finite element analysis and modal testing. Practical methods to increase the damping of the local resonances are proposed. Effects by filling urethan foam in the core cavity and by coating tar on the panel surface are compared by experiments. Modified panel structures to shift the local resonance frequency band are proposed. The results of the study are utilized to predict the severe local resonances in the aluminium extruded panels and prevent their undesirable effect on the sound insulation.

  • PDF

Negative-refraction Effect for Both TE and TM Polarizations in Two-dimensional Annular Photonic Crystals

  • Wu, Hong;Li, Feng
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • We systematically investigated the negative-refraction effect for both TE and TM polarizations in annular photonic crystals. Since two polarization waves are excited in different bands, they result in different refractive angles, and so polarization beam splitters can be made of annular photonic crystals. It was found that, in comparison to normal square-lattice air-hole photonic crystals, annular photonic crystals have a much wider common frequency band between TE-1 and TM-2, which is quite beneficial to finding the overlap between the negative-refraction regions belonging to TE-1 and TM-2 respectively. Further analyses of equifrequency surfaces and the electric-field distribution of annular photonic crystals with different parameters have not only demonstrated how the filling factor of annular cells affects the formation of the common negative-refraction region between TE-1 and TM-2, but also revealed some ways to improve the performance of a polarization beam splitter based on the negative-refraction effect in an annular photonic crystal.

The optical characteristics of $Al_{0.25}Ga_{0.75}As/In_{0.15}Ga_{0.85}As$/GaAspseudomorphic high electron mobility transistor structure grown by molecular beam epitaxy (분자선 에피탁시법으로 성장된 $Al_{0.25}Ga_{0.75}As/In_{0.15}Ga_{0.85}As$/GaAs 슈우도형 고 전자 이동도 트랜지스터 구조의 광학적 특성)

  • 이동율;이철욱;김기홍;김종수;김동렬;배인호;전헌무;김인수
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.130-135
    • /
    • 2000
  • We have analyzed characteristics for the structure of $Al_{0.25}/Ga_{0.75}/As/In_{0.15}/Ga_{0.85}$/AS/GaAS pseudomorphic high electron mobility transistor (PHEMT) by photoluminescence (PL) and photoreflectance (PR) measurements. By the PL measurement at 10 K, we observed el-hl transition peak at 1.322 eV and e2-hl transition peak at 1.397 eV in the InGaAs quantum well. We calculated value of 23 meV, the difference between the first energy level and the second energy level of a valence band by dependence of temperatures. Also, (e2-h2) transition signal was observed at 300 K by PR measurement. From the PR measurement, we recognized that the transition was dominated the second energy level of conduction band than the first energy level of conduction band due to band filling. The other hand, PL signal of the first energy level of conduction band was dominated because of the electron screening effect.

  • PDF

Effect of Oxygen Annealing on the Structural and Optical Properties of Sputter-deposited Vanadium Oxide Thin Films (스퍼터링으로 퇴적시킨 바나듐 산화막의 구조적, 광학적 특성에 미치는 산소 어닐링의 효과)

  • 최복길;최창규;김성진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1003-1010
    • /
    • 2000
  • Thin films of vanadium oxide(VOx) have been deposited by r.f. magnetron sputtering from V$_2$O$\_$5/ target in gas mixture of argon and oxygen. Crystal structure, surface morphology, chemical composition, molecular structure and optical properites of films in-situ annealed in O$_2$ambient with various heat-treatment conditions are characterized through XRD, SEM, AES, RBS, RTIR and optical absorption measurements. The films annealed below 200$\^{C}$ are amorphous, and those annealed above 300$\^{C}$ are polycrystalline. The growth of grains and the transition of vanadium oxide into the higher oxide have been observed with increasing the annealing temperature and time. The increase of O/V ratio with increasing the annealing temperature and time is attributed to the diffusion of oxygen and the partial filling of oxygen vacancies. It is observed that the oxygen atoms located on the V-O plane of V$_2$O$\_$5/ layer participate more readily in the oxidation process. Also indirect and direct optical band gaps were increased with increasing the annealing temperature and time.

  • PDF

Effect of Valence Electron Concentration on Elastic Properties of 4d Transition Metal Carbides MC (M = Y, Zr, Nb, and Rh)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2171-2175
    • /
    • 2013
  • The electronic structure and elastic properties of the 4d transition metal carbides MC (M = Y, Zr, Nb, Rh) were studied by means of extended H$\ddot{u}$ckel tight-binding band electronic structure calculations. As the valence electron population of M increases, the bulk modulus of the MC compounds in the rocksalt structure does not increase monotonically. The dominant covalent bonding in these compounds is found to be M-C bonding, which mainly arises from the interaction between M 4d and C 2p orbitals. The bonding characteristics between M and C atoms affecting the variation of the bulk modulus can be understood on the basis of their electronic structure. The increasing bulk modulus from YC to NbC is associated with stronger interactions between M 4d and C 2p orbitals and the successive filling of M 4d-C 2p bonding states. The decreased bulk modulus for RhC is related to the partial occupation of Rh-C antibonding states.

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

Pairing symmetry analyzed by a peak shape of density of states in an Bi2Sr2CaCu2O8+x superconductor

  • Kim, Hyun-Tak;Kang, Kwang-Yong
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.30-34
    • /
    • 2003
  • For an inhomogeneous superconductor, we reveal a relation of an observed superconducting gap, $\Delta$$_{obs}$ and the intrinsic true gap, $\Delta$$_{i}$, $\Delta$$_{obs}$(equation omitted) where band filling, 0<$\rho$<$\leq$1. $\Delta$$_{obs}$ is the effect of measurement when 0<$\rho$<1. The true gap is observed only when $\rho$=1. Parring symmetry analyzed by a coherence-peak shape of density of states, observed in B $i_2$S $r_2$CaC $u_2$ $O_{8}$$\chi$ superconductors, is s- wave.X> $O_{8}$$\chi$ superconductors, is s- wave. wave.

  • PDF

Oxygen Plasma Effect on AlGaN/GaN HEMTs Structure Grown on Si Substrate

  • Seo, Dong Hyeok;Kang, Sung Min;Lee, Dong Wha;Ahn, Du Jin;Park, Hee Bin;Ahn, Youn Jun;Kim, Min Soo;Kim, Yu Kyeong;Lee, Ho Jae;Song, Dong Hun;Kim, Jae Hee;Bae, Jin Su;Cho, Hoon Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.420-420
    • /
    • 2013
  • We investigated oxygen plasma effect on defect states near the interface of AlGaN/GaN High Electron Mobility Transistor (HEMT) structure grown on a silicon substrate. After the plasma treatment, electrical properties were evaluated using a frequency dependant Capacitance-Voltage (C-V) and a temperature dependant C-V measurements, and a deep level transient spectroscopy (DLTS) method to study the change of defect densities. In the depth profile resulted from the temperature dependant C-V, a sudden decrease in the carrier concentration for two-dimensional electron gas (2DEG) nearby 250 K was observed. In C-V measurement, the interface states were improved in case of the oxygen-plasma treated samples, whereas the interface was degraded in case of the nitrogen-plasma treated sample. In the DLTS measurement, it was observed the two kinds of defects well known in AlGaN/GaN structure grown on sapphire substrate, which have the activation energies of 0.15 eV, 0.25 eV below the conduction band. We speculate that this defect state in AlGaN/GaN on the silicon substrate is caused from the decrease in 2DEG's carrier concentrations. We compared the various DLTS signals with filling pulse times to identify the characteristics of the newly found defect. In the filling pulse time range under the 80 us, the activation energies changed as the potential barrier model. On the other hand, in the filling pulse time range above the 80 us, the activation energies changed as the extended potential model. Therefore, we suggest that the found defect in the AlGaN/GaN/Si structure could be the extended defect related with AlGa/N/GaN interface states.

  • PDF