• Title/Summary/Keyword: Band-Rejected Antenna

Search Result 6, Processing Time 0.021 seconds

Design of Antenna for UWB Application notched WLAN-Band (무선랜 대역 저지특성을 갖는 UWB 안테나 설계)

  • Kim, Kab-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.714-719
    • /
    • 2009
  • In this paper, a compact antenna with band-rejected characteristic for Ultra-Wideband(UWB) applications is proposed. The designed antenna not only shows sufficient impedance bandwidth but has band-rejected characteristic for the frequency band of 5.15~5.825GHz limited by IEEE 802.11a and HIPERLAN/2. To obtain both properties of wideband band rejection, the techniques of a partial ground plane and embedded thin U-slot into planar radiator are used respectively. A designed antenna satisfied a VSWR less than 2:1 for the frequency band of 3.1~10.3GHz with band rejection of 4.90~5.92GHz.

  • PDF

A Printed, Wideband Folded Monopole Antenna Coupling with a Parasitic Inverted-L Element for Bluetooth, WiMAX and UWB Systems (Bluetooth, WiMAX, UWB 시스템용 역 L형 무급전 소자 결합 프린트형 광대역 폴디드 모노폴 안테나)

  • Kim, Ki-Baek;Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1101-1110
    • /
    • 2011
  • This paper presents a printed, wideband folded monopole antenna for laptop and tablet computer applications. The proposed antenna is designed to cover bandwidth(2.3~10.6 GHz) of Bluetooth, WiMAX, and UWB system by using the printed folded monopole antenna having asymmetrical line width coupling with a parasitic inverted- L element. Also, wireless LAN band(5.15~5.85 GHz) which interferes with UWB system is rejected by inserting half-wavelength open stub in the folded monopole antenna. -10 dB bandwidth of the fabricated wideband antenna is 2.27~10.6 GHz (4.7:1) and -10 dB band-rejected bandwidth is measured as 700 MHz(5.15~5.85 GHz, 12.72 %). The gain and efficiency of the antenna except for the rejected band are higher than 3.93 dBi and 91.89 % and are measured as -2 dBi and 14.65 % at 5.5 GHz which is band-rejected frequency. The size of the antenna is suitable to install for small space of tablet and laptop computers as 12.75(1 ${\lambda}$/10)${\times}$12(1 ${\lambda}$/11) $mm^2$(${\lambda}$ is free space wavelength at 2.3 GHz). Therefore, we verified that the designed antenna is appropriate for wideband antenna of tablet and laptop PC applications.

Design and Implementation of UWB Antenna with Dual Band Rejection Characteristics for Mobile Handset (단말기용 이중 대역저지 특성을 가지는 초광대역 안테나 설계 및 구현)

  • Cho, Young Min;Yang, Woon Geun
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this paper, we present a compact planar dual band rejection Ultra Wide Band(UWB) antenna with folded parasitic element. The proposed antenna is consist of a hexagonal planar radiation patch antenna with a folded parasitic element which is located over the top and bottom surface. In contrast with other antenna which rejects single band using one method, folded parasitic element rejects dual band using one simple structure. Owing to folded parasitic element, dual-rejected properties are achieved in the Worldwide Interoperability for Microwave Access(WiMAX), C-band, and Wireless Local Area Network(WLAN) bands. The bandwidth of the proposed antenna was measured as 3.1~10.6 GHz for voltage standing wave ratio(VSWR) less than 2, except for the dual rejection bands of 3.4~4.2 GHz and 5.15~6.00 GHz.

Design of an Ultra-Wideband Antenna Using a Ring Resonator with a Notch Function

  • Lee, Jung-Nam;Kwon, Heon-Kook;Kang, Byung-Su;Lee, Kwang-Chun
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1075-1083
    • /
    • 2013
  • This paper describes an ultra-wideband (UWB) antenna that uses a ring resonator concept. The proposed antenna can operate in the entire UWB, and the IEEE 802.11a frequency band can be rejected by inserting a notch stub into the ring resonator. The experiment results indicate that the measured impedance bandwidth of the proposed antenna is 17.5 GHz (2.5 GHz to at least 20 GHz). The proposed UWB antenna has omnidirectional radiation patterns with a gain variation of 3 dBi (1 dBi to 4 dBi).

Band-Rejected UWB Antenna Using Unit Cells of FSS (FSS 단위 셀을 이용한 대역저지 UWB 안테나)

  • Lee, Chang Yong;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3431-3436
    • /
    • 2013
  • Band-notched ultra-wideband (UWB) antennas using frequency selective surfaces (FSSs) are presented. The proposed antennas utilized the band rejection characteristic of typical FSS unit cells. We loaded the FSS unit cells on the same plane of planar UWB antenna. These antennas are designed to reject the interference from the wireless local area network band, 5.15-5.825 GHz in the UWB band, 3.1-10.6 GHz. The measured peak gains of the proposed antennas are more than 2 dBi at both operation edge and center frequencies, and sufficient to apply for commercial purpose. The antennas are small size and planar shape for the purpose of the small mobile application, and enhanced design freedom by using various existing FSS unit cells.

Analysis of Optimum Antenna Placement Considering Interference Between Airborne Antennas Mounted on UAV (무인항공기 탑재 안테나 간 간섭을 고려한 안테나 최적 위치 분석)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.32-40
    • /
    • 2015
  • In this paper, the optimum antenna placement is analyzed by considering the interference between airborne antennas mounted on the unmanned aerial vehicle(UAV). The analysis is implemented by selecting the antennas that the distance and operational frequency band between airborne antennas is close to each other among the omni-directional antennas. The analyzed antennas are the control datalink, TCAS(Traffic Collision & Avoidance System), IFF(Identification Friend or Foe), GPS(Global Positioning System), and RALT(Radar ALTimeter) antennas. There are three steps for the optimum antenna placement analysis. The first step is selecting the antenna position having the optimum properties by monitoring the variation of radiation pattern and return loss by the fuselage of UAV after selecting the initial antenna position considering the antenna use, type, and radiation pattern. The second one is analyzing the interference strength between airborne antennas considering the coupling between airborne antennas, spurious of transmitting antenna, and minimum receiving level of receiving antenna. In case of generating the interference, the antenna position without interference is selected by analyzing the minimum separation distance without interference. The last one is confirming the measure to reject the frequency interference by the frequency separation analysis between airborne antennas in case that the intereference is not rejected by the additional distance separation between airborne antennas. This analysis procedure can be efficiently used to select the optimum antenna placement without interference by predicting the interference between airborne antennas in the development stage.