• Title/Summary/Keyword: Band gaps

Search Result 155, Processing Time 0.024 seconds

On the use of the wave finite element method for passive vibration control of periodic structures

  • Silva, Priscilla B.;Mencik, Jean-Mathieu;Arruda, Jose R.F.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.299-315
    • /
    • 2016
  • In this work, a strategy for passive vibration control of periodic structures is proposed which involves adding a periodic array of simple resonant devices for creating band gaps. It is shown that such band gaps can be generated at low frequencies as opposed to the well known Bragg scattering effects when the wavelengths have to meet the length of the elementary cell of a periodic structure. For computational purposes, the wave finite element (WFE) method is investigated, which provides a straightforward and fast numerical means for identifying band gaps through the analysis of dispersion curves. Also, the WFE method constitutes an efficient and fast numerical means for analyzing the impact of band gaps in the attenuation of the frequency response functions of periodic structures. In order to highlight the relevance of the proposed approach, numerical experiments are carried out on a 1D academic rod and a 3D aircraft fuselage-like structure.

The Calculation of the Energy Band Gaps and Optical Constants of Zincblende InyGa1-yAs1-xNx on Composition (조성비 변화에 따른 질화물계 화합물 반도체 InyGa1-yAs1-xNx의 에너지 밴드갭과 광학상수 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.877-886
    • /
    • 2019
  • The energy band gaps and optical constants of zincblende $In_yGa_{1-y}As_{1-x}N_x$ on the variation of temperature and composition are determined by using band anticrossing method. The energy band gaps are decreasing continuously in $In_yGa_{1-y}As_{1-x}N_x$ ($0{\leq}x{\leq}0.05$, $0{\leq}y{\leq}1.0$, 300K) and the bowing parameter is calculated as 0.522eV. The calculation results of energy band gaps are consistent with those of other studies. A refractive index n and a high-frequency dielectric constant ${\varepsilon}$ are calculated by a proposed modeling equation using the results of energy band gaps.

Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation

  • Xiang, Hong-Jun;Shi, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.373-392
    • /
    • 2011
  • Periodic and quasi-periodic Timoshenko beams on Pasternak foundation are investigated using the differential quadrature method. Not only band gaps in the beams but also the dynamic response of them is analyzed. Numerical results show that vibration in periodic beams can be dramatically attenuated when the exciting frequency falls into band gaps. Different from the band structures of periodic beams without foundation, the so-called critical frequency was found because of the Pasternak foundation. Its physical meaning was explained in detail and a useful formula was given to calculate the critical frequency. Additionally, a comprehensive parameter study is conducted to highlight the influence of foundation modulus on the band gaps.

The Calculation of the Energy Band Gaps of Zincblende GaP1-X NX (질화물계 반도체 GaP1-X NX의 에너지 밴드갭 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.783-790
    • /
    • 2017
  • The energy band gaps and the bowing parameters of zincblende GaP1-xNx on the variation of temperature and composition are determined by using an empirical pseudopotential method with another virtual crystal approximation, which includes the disorder effect. The bowing parameter calculated is 13.1eV and the energy band gaps are decreased rapidly for GaP1-xNx ($0{\leq}x{\leq}0.05$, 300K). A refractive index n and a function of real dielectric constant ${\varepsilon}$ are calculated by the results of energy band gaps and the calculation results of energy band gaps are consistent with experimental values.

The Calculation of the Energy Band Gaps and Optical constants of Zincblende GaAs1-X NX on Temperature and Composition (온도 및 조성비 변화에 따른 질화물계 화합물 반도체 GaAs1-X NX의 에너지 밴드갭과 광학상수 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1213-1222
    • /
    • 2018
  • The energy band gaps and the bowing parameters of zincblende $GaAs_{1-x}N_x$ on the variation of temperature and composition are determined by using an empirical pseudo-potential method with another virtual crystal approximation, which includes the disorder effect. The bowing parameter is calculated as 15eV and the energy band gaps are decreasing rapidly in $GaAs_{1-x}N_x$ ($0{\leq}x{\leq}0.05$, 300K). A refractive index n and a function of high-frequency dielectric constant ${\varepsilon}$ are calculated by the results of energy band gaps and the calculation results of energy band gaps are consistent with experimental values.

The Calculation of the Energy Band Gaps of Zincblende InAs1-X NX on Temperature and Composition (온도 및 조성비 변화에 따른 질화물계 화합물 반도체 InAs1-X NX의 에너지 밴드갭 계산)

  • Chung, Ho-Yong;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1165-1174
    • /
    • 2016
  • The energy band gaps and the bowing parameters of zincblende InAs1-xN are determined by using an empirical pseudopotential method(EPM) within the improved virtual crystal approximation(VCA), which includes the disorder effect. The direct-band-gap bowing parameter calculated by using the EPM is 4.1eV for InAs1-xNx ($0{\leq}x{\leq}0.05$). The dependences of the band gaps of N-dilute InAs1-xNx on the temperature and composition are calculated by modifying the band anti-crossing(BAC) model. The calculation results are consistent with experimental values, and the coupling parameter CMN of InAs1-xNx is found to be equal to 1.8 by fitting the EPM data.

Synthesis and Application of the Novel Azomethine Metal Complexes for the Organic Electroluminescent Devices

  • Kim, Seong Min;Kim, Jin Sun;Sin, Dong Myeong;Kim, Yeong Gwan;Ha, Yun Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.743-747
    • /
    • 2001
  • New azomethine metal complexes were synthesized systematically and characterized. Beryllium, magnesium, or zinc ions were used as a central metal cation and aromatic azomethines (L1-L4) were employed as a chelating anionic ligand. Emission peaks o f the complexes in both solution and solid states were observed mostly at the region of 400-500 nm in the luminescence spectra, where blue light was emitted. Three of them (BeL1 (Ⅰ), ZnL2 (Ⅱ), and ZnL3 (Ⅲ)) were sublimable and thus were applied to the organic light-emitting devices (OLED) as an emitting layer, respectively. The device including the emitting layer of Ⅰ exhibited white emission with the broad luminescence spectral range. The device with the emitting layer of Ⅱ showed blue luminescence with the maximum emission peak at 460 nm. Their ionization potentials, electron affinities, and electrochemical band gaps were investigated with cyclic voltammetry. The electrochemical gaps of 2.98 for I, 2.70 for Ⅱ, and 2.63 eV for Ⅲ were found to be consistent with their respective optical band gaps of 3.01, 2.95 and 2.61 eV within an experimental error. The structure of OLED manufactured in this study reveals that these complexes can work as electron transporting materials as well.

Electrical and Optical Properties of Zinc Oxide Thin Films Deposited Using Atomic Layer Deposition

  • Kim, Jeong-Eun;Bae, Seung-Muk;Yang, Hee-Sun;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.353-356
    • /
    • 2010
  • Zinc oxide (ZnO) thin films were deposited using atomic layer deposition. The electrical and optical properties were characterized using Hall measurements, spectroscopic ellipsometry and UV-visible spectrophotometry. The electronic concentration and the mobility were found to be critically dependent on the deposition temperature, exhibiting increased resistivity and reduced electronic mobility at low temperature. The corresponding optical properties were measured as a function of photon energy ranging from 1.5 to 5.0 eV. The simulated extinction coefficients allowed the determination of optical band gaps, i.e., ranging from 3.36 to 3.41 eV. The electronic carrier concentration appears to be related to the reduction in the corresponding band gap in ZnO thin films.

Smart Particles Containing Multiple Rugate-structured Photonic Crystal

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.253-256
    • /
    • 2012
  • The rugate porous silicons containing multiple photonic band gaps have been generated by applying a composite waveform summed three computer-generated pseudo-sinusoidal current waveforms and exhibit three sharp photonic band gaps in the optical reflectivity spectrum. Generated multiple rugate porous silicons display three rugate peaks corresponding to the each of the sine components varied from 0.42, 0.36, and 0.30 Hz, with a spacing of 0.06 Hz between each sine component. The resulting rugate PSi films have been removed from the silicon substrate by applying an lift-off current and are then made into particles by ultrasono-method in a organic solution. The sensing experiments using these particles for organic solvents such as toluene, hexane, acetone, and methanol have been achieved. Condensing of organic vapors in the pores increases the refractive indices of entire particle which results a red shift in the photonic peaks.

Photonic Band Gaps for Surface Plasmon Modes in Dielectric Gratings on a Flat Metal Surface

  • Song, Seok-Ho;Yoon, Jae-Woong;Lee, Gwan-Su;Oh, Cha-Hwan;Kim, Pill-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.76-82
    • /
    • 2002
  • For dielectric gratings on a flat metal surface, photonic band gaps created by Brags scattering of surface plasmon polaritons are observed. The observation result that directly images this gap is compared with that predicted by a numerical model based on a plane wave expansion. Consistency between the experimental and numerical results is also confirmed by comparison with the well-known calculation method of diffraction, the rigorous coupled wave analysis method.