• Title/Summary/Keyword: Band Flatness

Search Result 91, Processing Time 0.028 seconds

A Study on Design of Maximally Flat 2-D FIR Circular Filter (최대 평탄특성을 위한 2-D FIR Circular 필터 설계에 관한 연구)

  • Seo, Hyun-Soo;Bae, Sang-Bum;Kim, Nam-Ho
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.159-162
    • /
    • 2005
  • Recently, due to rapid developments of wireless communication and digital TV, modern society needs to process of aquisition, storage and transmission of much information. So the importance of signal processing is increasing and various digital filters are used in the two-dimensional signal such as image. And kinds of these digital filters are IIR(infinite impulse response) filter and FIR(finite impulse response) filter. And FIR filter which has the phase linearity, the easiness of creation and stability is applied to many fields. In design of this FIR filter, flatness property is a important factor in pass-band and stop-band. In this paper, we designed a 2-D Circular FIR filter using the Bernstein polynomial, it is presented flatness property in pass-band and stop-band. And we simulated the designed filter with noisy test image and compared the results with existing methods.

  • PDF

Design of MMIC power amplifier using double tuned matching (Double tuned matching에 의한 MMIC 광대역 전력 증폭기의 설계)

  • 김진성;채연식;윤용순;이진구
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.150-153
    • /
    • 2000
  • In this paper, we have designed a 2 stage MMIC power amplifier which has flat gains of in-band and reasonable out-band cutoff characteristics using 0.5$\mu\textrm{m}$ MESFET libra교 of ETRI. For the 1st stave, we obtaind P$_{1dB}$ of 9.2 dBm and gain 10.8 dB using 6 finger D-MESFET and P$_{1dB}$ of 18.4 dBm and gain of 10.8 dB using 14 finger D-MESFET for the 2nd stage, which is power matched using LIBRA's embedded TUNER. Also in-band gain flatness and out-band cutoff characteristics are obtained by attaching LC tank in the output matching circuit. The designed 2 stage MMIC power amplifier has bandwidth of 0.95~2.8 GHz, gain of 20 dB and P$_{1dB}$of 17.2 dBm. Especially gain flatness of $\pm$0.8dB was obtained in 1.8~2.5 GHz frequency ranges. And chip size is 1.4$\times$1.4 mm..4 mm.

  • PDF

Design of Ku-Band Low Noise Amplifiers including Band Pass Filter Characteristics for Communication Satellite Transponders (대역통과여파기 특성을 갖는 통신위성중계기용 Ku-Band 저잡음증폭기의 설계 및 제작)

  • 임종식;김남태;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.872-882
    • /
    • 1994
  • In this paper, the Low Noise Amplifier(LNA) is designed and fabricated to include a band pass filter characteristics considering the antenna system characteristics according to the transmitting and receiving signal level of communication satellite transponder. As an example, a 2-stage low noise amplifier and a 4-stage amplifier and designed, fabricated and measured at 14,0~14.5GHz of receiving frequency band. This fabricated LNA has shown the gain with very good flatness within pass-band, and its gain decreases rapidly out of band resulting in supperssion of the transmitting signal power leakage. It has shown the 20.3dB +- 0.1dB of pass-band gain, the 1.44dB +-0.04dB of noise figure and the 14dB rejection out of band(12.25~12.75GHz). The gain flatness, noise figure and group delay of this 2-stage LNA satisfactorily met the simulation results. And the fabricated 4-stage amplifier has shown the more than 42dB of pass-band gain, the +-0.25dB of flatness and the 28dB of the rejection effect for transmitting power leakage. The 2-stage LNA and 4-stage amplifier, in this paper, will bring a design margin for the input filter and also result in the system cost reduction.

  • PDF

An RF Amplitude Equalizer ; Improved Passband Flatness of a Bandpass Filter

  • Hwang, Hee-Yong;Jung, Jung-Seong;Yun, Sang-won
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.83-87
    • /
    • 2001
  • Many communication systems require bandpass filters with sharp skirt frequency characteristics in order to avoid the interferencce, which results in more order in the filter design. However, because of the limited Q values bandpass filters made of small sized ceramic resonators suffer from relatively large ripples at the band edges as the order of the filter increases. In order to compensate the large ripples while maintaining the sharp skirt frequency we propose a new RF amplitude equalizer. The equalizer made of two pole bandpass filter and an amplifier whose amplitude characteristics are the reverse of those of the bandapss filter. At the cellular band 9-pole bandpass filter with 10 MHz bandwidth exhibits 3 dB ripple when 8mm*8mm ceramic coaxial resonators are used. We added the RF equalizer to this filter and the flatness is improved as less than 1 dB.

  • PDF

Design of Active Bandpass Filter Considering The Amplitude Flatness of Passband (대역 내 진폭 특성의 평탄도를 고려한 4단 능동 대역통과 여파기 설계)

  • Bang, Inn-Dae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.638-648
    • /
    • 2003
  • An active capacitance circuit is analyzed in depth and its application to active RF BPF with low noise figure is discussed. The characteristics of the active capacitance circuit made of FET[1] exhibits negative resistance and conventional capacitance, which is easily controlled. However, it is difficult to make the negative resistance adequate in the designated frequency range due to the lack of detailed analysis, which could make an active circuit unstable as the frequency is going higher or lower. In this paper, we analyzed the negative resistance characteristics of active capacitance circuits and also presented the method that the flatness of passband can be controlled. Finally we have designed a 4-stage active BPE, which results in bandwidth of 100 MHz, 0,04 dB insertion loss, 0.2 dB ripple, and noise figure of 2.4 dB at 1.75 GHz band.

  • PDF

Genetic Algorithm Optimization of LNA for Wireless Applications in 2.4GHz Band

  • Kim Ji-Yoon;Yang Doo-Yeong
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.29-33
    • /
    • 2006
  • The common-source low noise amplifier(LNA) with inductive degeneration using a genetic algorithm is designed and tested for a down converter in an industrial, scientific and medical (ISM) band application and a wireless broadband internet service (WiBro). The genetic algorithm optimizes the reflection coefficients to be well matched the input and output ports between multistage transistor amplifiers, and it generates low voltage standing wave ratio as well as gain flatness of the amplifier. The stability and the gain flatness of the LNA have been improved by combining the matching circuits and the series feedback microstrip lines with inductive degeneration at common-source port. In the frequency range of ISM band and WiBro application operating at $2.3GHz{\sim}2.5GHz$, the measured power gain and maximum voltage standing wave ratio (VSWR) of the LNA are $41{\pm}0.5dB$ and 1.3, and the noise figure of the LNA is lower than 0.85dB. The above results are agreed well with the theoretical values of the amplifiers.

  • PDF

Fabrication and Characteristic Analysis of Optical Transceiver for Transmitting IMT-2000 & PCS Wireless Band (IMT-2000 & PCS 무선대역전송용 광 송수신기 제작 및 특성분석)

  • Kim, Chang-Won;Kim, Byeong-Jik;O, Yun-Je;Yang, Gwang-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.7
    • /
    • pp.24-30
    • /
    • 2000
  • In this paper, we proposed an fiber-optic transceivers based on the analog optical transmission techniques of incorporating the SCM (subcarrier multiplexing) and WDM (wavelength-division multiplexing ) method, which can be used to transmission of IMT-2000 and PCS wireless frequency band and analyzed overall those parameters related with fabrication. Especially in the impedance matching network between RF signal and LD, we proposed the method of deriving optimal performance using simulation techniques. In the frequency band of 1.7GHz∼2.25GHz, experimental data for the gain flatness and the noise floor of the optical link were also presented $\pm$1.5dB and -130dBm respectively when the link Rain was 0dB.

  • PDF

The Effect of Image Rejection Filter on Flatness of Microwave Terrestrial Receiver

  • Han, Sok-Kyun;Park, Byung-Ha
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.86-90
    • /
    • 2003
  • A flat conversion loss in microwave mixer is hard to achieve if integrating with an image rejection filter(IRF). This is due to the change of termination condition with respect to the LO and IF frequency at RF port where the filter has 50 ohm termination property only in the RF band. This paper describes a flatness maintenance in the down mixer concerning a diode matching condition as well as an electrical length of embedding line at RF port. The implemented single balance diode mixer is suitable for a 23 ㎓ European Terrestrial Radio. RF, LO and fixed IF frequency chosen in this paper are 21.2∼22.4 ㎓, 22.4∼23.6 ㎓ and 1.2 ㎓, respectively. The measured results show a conversion loss of 8.5 ㏈, flatness of 1.2 ㏈ p-p, input P1㏈ of 7㏈m, IIP3 of 15.42 ㏈m with nominal LO power level of 10㏈m. The return loss of RF and LO port are less than - 15 ㏈ and - 12 ㏈, respectively and IF port is less than - 6 ㏈. LO/RF and LO/IF isolation are 18 ㏈ and 50 ㏈, respectively. This approach would be a helpful reference for designing up/down converter possessing a filtering element.

Control Technique of Modem Output Level to improve Frequency Response Equalization of Satellite TX Terminals (위성 단말 송신부의 주파수 응답 평탄도를 향상시키기 위한 모뎀 출력 조절 방법)

  • Cho, Tae-Chong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.129-133
    • /
    • 2019
  • Frequency resource efficiency is important in satellite communication systems. One of the causes of a waste of frequency resource is bad flatness. In the case, flatness of satellite Tx terminals would be worse by ACI and guard band. In order to overcome this problem, this paper proposes a technique for frequency response equalization in satellite Tx terminals. First of all, a general linear polynomial expression which meets least squares of representative measurement data is calculated to interpolate unmeasured data. And then flatness can be adjusted using the polynomial expression. Simulation results illustrate adjusted data have lower peak to peak and standard deviation than original data, and these show that flatness be improved.

Front-End Module of 18-40 GHz Ultra-Wideband Receiver for Electronic Warfare System

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.188-198
    • /
    • 2018
  • In this study, we propose an approach for the design and satisfy the requirements of the fabrication of a small, lightweight, reliable, and stable ultra-wideband receiver for millimeter-wave bands and the contents of the approach. In this paper, we designed and fabricated a stable receiver with having low noise figure, flat gain characteristics, and low noise characteristics, suitable for millimeter-wave bands. The method uses the chip-and-wire process for the assembly and operation of a bare MMIC device. In order to compensate for the mismatch between the components used in the receiver, an amplifier, mixer, multiplier, and filter suitable for wideband frequency characteristics were designed and applied to the receiver. To improve the low frequency and narrow bandwidth of existing products, mathematical modeling of the wideband receiver was performed and based on this spurious signals generated from complex local oscillation signals were designed so as not to affect the RF path. In the ultra-wideband receiver, the gain was between 22.2 dB and 28.5 dB at Band A (input frequency, 18-26 GHz) with a flatness of approximately 6.3 dB, while the gain was between 21.9 dB and 26.0 dB at Band B (input frequency, 26-40 GHz) with a flatness of approximately 4.1 dB. The measured value of the noise figure at Band A was 7.92 dB and the maximum value of noise figure, measured at Band B was 8.58 dB. The leakage signal of the local oscillator (LO) was -97.3 dBm and -90 dBm at the 33 GHz and 44 GHz path, respectively. Measurement was made at the 15 GHz IF output of band A (LO, 33 GHz) and the suppression characteristic obtained through the measurement was approximately 30 dBc.