• Title/Summary/Keyword: Ballistic missile

Search Result 132, Processing Time 0.025 seconds

Conceptual Configuration Design of Short Range Ballistic Missiles by Using Multidisciplinary Design Optimization Approach (다분야 설계 최적화 기법을 이용한 단거리 탄도 미사일의 초기형상 설계)

  • Jin, Jaehyun;Han, Duhee;Jin, Jaehoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.228-239
    • /
    • 2019
  • In order to design the conceptual configuration of the short-range ballistic missile, the authors have established an optimization problem considering various aspects such as volume, aerodynamics, propulsion, structure, stability, and flight trajectory. For this purpose, the existing missile cases were analyzed and the design conditions and performance indices were derived. The performance of the whole system was analyzed by integrating each subsystem's model. Through the design example, we analyzed the relationship between various design variables and final performances.

Analysis of the Optimal Frequency Band for a Ballistic Missile Defense Radar System

  • Nguyen, Dang-An;Cho, Byoungho;Seo, Chulhun;Park, Jeongho;Lee, Dong-Hui
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.231-241
    • /
    • 2018
  • In this paper, we consider the anti-attack procedure of a ballistic missile defense system (BMDS) at different operating frequencies at its phased-array radar station. The interception performance is measured in terms of lateral divert (LD), which denotes the minimum acceleration amount available in an interceptor to compensate for prediction error for a successful intercept. Dependence of the frequency on estimation accuracy that leads directly to prediction error is taken into account, in terms of angular measurement noises. The estimation extraction is performed by means of an extended Kalman filter (EKF), considering two typical re-entry trajectories of a non-maneuvering ballistic missile (BM). The simulation results show better performance at higher frequency for both tracking and intercepting aspects.

Launch Point Estimation for a Ballistic Missile using the Phase Division Least Square Method (단계 분리형 최소 자승법을 이용한 탄도 미사일의 발사지점 예측 연구)

  • Kim, Jun-Ki;Lee, Dong-Kwan;Cho, Kil-Seok;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.414-421
    • /
    • 2014
  • This paper presents a method of ballistic missile launch point estimation using phase division least squares. The proposed algorithm employs smoothing to enhance estimation accuracy and generates functions of time for total velocity, flight path angle and heading angle, allowing extrapolation to estimate the launch point. Performance of the proposed algorithm is tested in conjunction with the extended Kalman filter and the Kalman filter.

Concept and Employment Status of EPAA(European Phased Adaptive Approach) (EPAA(European Phased Adaptive Approach) 개념과 구축 현황)

  • Moon, Suk-hyun;Kim, Young-deuk;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.586-588
    • /
    • 2015
  • U.S. is constructing EPAA(European Phased Adaptive Approach) as a part of BMDS(Ballistic Missile System). The purpose of EPAA is to protect European NATO territory from Iranian ballistic missile threats. EPAA project consists of three phase, $1^{st}$ phase is completed as deploying transportable forces such as aegis BMD ships at the mediterranean, and $2^{nd}$ phase is on going. In this paper, the concept, characteristics, current status and future works of EPAA are surveyed and described.

  • PDF

Development Status of Arrow Missile Defense System (Arrow 미사일 방어체계 개발 현황)

  • Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.283-284
    • /
    • 2018
  • The Arrow system, an Israeli missile defense system, was developed through a strategic partnership between the United States and Israel. Israel's cooperation with the Strategic Defense Initiative(SDI) research of the Reagan administration in the United States began in 1986 with the development of a tactical ballistic missile defense system and two increasingly improvements to Arrow 3. It could be a moral lessen to developing Korean Ballistic Missile Defense System because Israel's Geopolitical environment is similar to Korean peninsula.

  • PDF

Warhead Tracking Filter for FMCW Seekers with Anti-Ballistic Missile Capability (대탄도탄 FMCW 탐색기를 위한 탄두부 추적 필터 설계)

  • Han, Seul-Ki;Ra, Won-Sang;Park, Jin-Bae;Hong, Young-Gon;Park, Sung-Ho;Sun, Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.726-734
    • /
    • 2012
  • In this paper, a practical warhead tracking filter is proposed for developing a FMCW (Frequency Modulation Continuous Wave) seeker with anti-ballistic missile capability. For reliable warhead tracking, the measurement originated from the warhead section of a ballistic target should be separated from other measurements. Futhermore, since the FMCW seeker is based on triangular frequency modulation, the multiple measurements obtained in different chirp periods should be properly associated. As a systematic way to solve the problem, the measurement pairing problem under cluttered environment is reformulated as a data association filtering problem and the PDA (Probabilistic Data Association) scheme is applied. The proposed warhead tracking filter provides better warhead tracking performance compared to the conventional range tracking algorithm and nearest neighbor warhead tracking filter. The effectiveness and reliability of the proposed method are verified using the FMCW seeker simulator.

An Analysis Study about Relationship between Ballistic Coefficient and Accuracy of Predicted Intercept Point of Super-High Speed Targets (초고속 표적의 탄도계수와 예상요격지점 정확도의 상관관계 분석 연구)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.265-274
    • /
    • 2014
  • A recent air defense missile system(ADMS) is required to have a capability to intercept super-high speed targets such as tactical ballistic missiles(TBMs) by performing engagement control efficiently. The air defense missile system should be ready to engage the TBMs as soon as the ADMS detects TBMs because falling velocity of TBM is very high and remaining time interval to engage TBM is very short. As a result, the ADMS has to predict the trajectories of TBMs accurately with estimated states of dynamics to generate predicted intercept point(PIP). In addition, it is needed to engage TBMs accurately via transmitting the obtained PIP data to the corresponding intercept missiles. In this paper, an analysis about the relationship between ballistic coefficient and PIP accuracy which is depending on geodetic height of the first detection of TBM is included and an issue about effective engagement control for the TBM is considered.

Estimation of Safety Area for Intercept Debris by Using Modeling and Simulation (탄도탄 요격시험 안전구역 산출을 위한 모델링 및 시뮬레이션)

  • Lee, Sungkyun;Go, Jinyong;Han, Yongsu;Kim, Changhwan
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The ballistic missile threat continues to increase with the proliferation of missile technology. In response to this threat, many kinds of interceptors have been emphasized over the years. For development of interceptor, systematic flight tests are essential. Flight tests provide valuable data that can be used to verify performance and confirm the technological progress of ballistic missile defense system including interceptor. However, during flight tests, civilians near the test region could be risk due to a lot of intercept debris. For this reason, reliable estimate of safety area for the flight tests should be preceded. In this study, prediction of safety area is performed through modeling and simulation. Firstly, behaviors of ballistic missile and interceptor are simulated for those entire phase including interception to obtain the relative intercept velocity and the relative impact angle. By using obtained data of kinetic energy, the fragment ejection velocity is calculated and fragment trajectories are simulated by considering drag, gravity and wind effects. Based on the debris field formation and hazard evaluation of debris, final safety area is calculated.

A Study on the Deployment of a Sea Based Sensor Platform for the Detection of a SLBM (잠수함 발사 탄도미사일 탐지를 위한 해상 센서플랫폼의 배치에 관한 연구)

  • Kim, Jiwon;Kwon, Yong Soo;Kim, Namgi;Kim, Dong Min;Park, Young Han
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.363-369
    • /
    • 2015
  • This paper describes deployment of a sea based sensor platform for the detection of a submarine launched ballistic missile (SLBM). Recently, North Korea successfully conducted the underwater launching test of the SLBM, which will seriously threaten the global security. To defend these threats successfully, a sensor platform of the ballistic missile defense (BMD) should be deployed in the area of high detection probability of the missile. The maximum detection range characteristics of the typical radar sensor system, however, depend on the radar cross section (RCS) and flight trajectories of the target. In this point of view, this work analyzed the flight trajectories based on the tactics and calculated the RCS of the SLBM. In addition, sea based sensor platform position is proposed from the analysis of the detection time.

A Precise Trajectory Prediction Method for Target Designation Based on Cueing Data in Lower Tier Missile Defense Systems (큐잉 데이터 기반 하층방어 요격체계의 초고속 표적 탐지 방향 지정을 위한 정밀 궤적예측 기법)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun;Kwon, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.523-536
    • /
    • 2013
  • A recent air defense missile system is required to have a capability to intercept short-range super-high speed targets such as tactical ballistic missile(TBMs) by performing engagement control efficiently. Since flight time and distance of TBM are very short, the missile defense system should be ready to engage a TBM as soon as it takes an indication of the TBM launch. As a result, it has to predict TBM trajectory accurately with cueing information received from an early warning system, and designate search direction and volume for own radar to detect/track TBM as fast as it can, and also generate necessary engagement information. In addition, it is needed to engage TBM accurately via transmitting tracked TBM position and velocity data to the corresponding intercept missiles. In this paper, we proposed a method to estimate TBM trajectory based on the Kepler's law for the missile system to detect and track TBM using the cueing information received before the TBM arrives the apogee of the ballistic trajectory, and analyzed the bias of prediction error in terms of the transmission period of cueing data between the missile system and the early warning system.