• Title/Summary/Keyword: Ballistic Coefficients

Search Result 11, Processing Time 0.034 seconds

PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS (증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

Analysis of Internal Ballistic Characteristics of Solid Rocket with Erosive Burning (침식연소에 따른 고체 로켓 내탄도 특성 변화 분석)

  • Cho, Mingyoung;Kim, Jinyong;Park, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.56-61
    • /
    • 2014
  • Two erosive burning models were applied to compare analysis results of ballistic for the internal ballistics of solid rocket motors. By comparing motor tests with results of analysis, the variance of a grain shape was analyzed and coefficients of erosive burning were drawn. Results of comparison presents that the coefficient of erosive burning was proportional to the change of burning area, while inversely proportional to the change of cross area.

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

An Experimental Method for Obtaining Aerodynamic Roll Damping Coefficients of Fin Stabilized Projectile from Telemetry Experiments (텔레메트리 시험을 이용한 날개안정형 발사체의 회전감쇠 공력계수 실험적 산출 방법)

  • Kim, Jinseok;Kim, Gyeonghun;Choi, Jaehyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.784-789
    • /
    • 2018
  • Accurate aerodynamic characterization of projectile is crucial for successful development of munition. The aerodynamic characterization of fin stabilized projectile is more difficult than characterization of traditional symmetric ballistic projectile. Instrumented free flight experiments were conducted to quantify rolling behavior of fin stabilized projectile. The instrumented projectiles were launched from a rifled tube and the onboard sensor data were acquired through a telemetry transmitter. Roll rate was measured for fin stabilized projectile by means of an angular rate sensor. And, roll damping coefficients were estimated from onboard sensor data acquired during gun firing and trajectory analysis of mathematical model.

The Design Approach of PAD System by using a Solid Propellant (고체추진제를 이용한 PAD 시스템 설계기법)

  • Oh Seok-Jin;Lee Do-Hyung;Kim Yoon-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.7-10
    • /
    • 2006
  • A quasi-equilibrium model is used in order to aid movement and ballistic analysis for a propellant actuated device(PAD) system. The validity of the model is examined by experiments of a PAD system. The appropriateness of its usage for application was explored by comparing the tendency of experiments and analysis results, and the coefficients of friction and heat loss were obtained. The design method developed will be applied to the design of PAD systems.

  • PDF

Study the effects of grain shape on the erosive burning (그레인 형상에 따른 침식연소 효과 연구)

  • Cho, Min-Gyung;Kim, Jin-Yong;Kwon, Tae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.232-235
    • /
    • 2011
  • A typical unsteady internal ballistic analysis model was developed to take account the erosive burning of a solid rocket motor. The variance of local velocity and pressure along grain surface were analyzed by using the continuity and momentum equation. The coefficients of erosive burning were drew from comparing experiment data with analysis. It was investigated that the grain shapes of propellant affect the erosive burning.

  • PDF

3D feature profile simulation for nanoscale semiconductor plasma processing

  • Im, Yeon Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.

  • PDF

Simulation of Separation Mechanism by Modeling a Propellant Actuated Device (PAD 모델링을 통한 분리메카니즘 시뮬레이션 기법)

  • Oh, Seok-Jin;Lee, Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.45-52
    • /
    • 2010
  • This paper presents a mathematical-physical model to predict the performance of a gas pusher used as a separation system powered by a gas generator. A quasi-steady model is used in order to aid ballistic analysis for a propellant actuated device(PAD). The empirical coefficients of heat loss and friction were determined from experiments. The analytical approach of combustion, flow and movement of a piston inside the chamber of the PAD, consisted of a gas generator and a gas pusher, was simulated by numerical method based on the grain configuration design of the gas generator. The prediction method developed can be usefully applied to the design of separation mechanism systems.

Performance Prediction Method of Hybrid Rocket Motors with Local Variance of Combustion (국부연소 후퇴율을 고려한 하이브리드로켓의 성능예측 기법연구)

  • Cho, Min-Gyung;Heo, Jun-Young;Park, Hyung-Ju;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • An unsteady internal ballistic performance model was proposed to take account for the variance of local regression rate along the grain port of a hybrid rocket combustor. The characteristic parameters of hybrid rocket motor was investigated. The performance model of concern in the study was fairly comparable with the test result. The combustion coefficients and local burning characteristics of a hybrid rocket motor were evaluated. The local variation of the oxidizer mass flow rate results in the changes of local regression rate, pressure, temperature, and gas velocity to flow direction, which was analyzed quantitatively.

The Reynolds Number Effects on the Projectile with an Altitude Change (고도에 따른 발사체의 레이놀즈수 영향성 연구)

  • Yang, Young-Rok;Hu, Sang-Bum;Lee, Young-Min;Cho, Tae-Hwan;Myong, Rho-Shin;Park, Chan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.683-688
    • /
    • 2009
  • A research was conducted about the Reynolds number effect on the projectile with an altitude change. The atmosphere conditions change in accordance with an altitude change. It effects the Reynolds number. To confirm how the phenomena affect the trajectory of the projectile, a computer program is designed with an altitude and a range considered. The MISSILE DATCOM which is based on the semi-empirical method was utilized to get aerodynamic coefficients. The result shows that the Reynolds number considerably changes as the altitude change. It causes to change the drag coefficient of the projectile. As the Reynolds number decreases, the skin friction drag increases significantly. It causes to decrease the maximum altitude and the range.