• Title/Summary/Keyword: Ballet Fouette

Search Result 2, Processing Time 0.016 seconds

A Biomechanical Analysis of Lower Extremity Segment dur ing the Fouette en dehors Performed by Ballet Dancers (발레 무용수의 Fouette en dehors동작 시 하지분절에 대한 생체역학적 분석)

  • Lee, Jin;Oh, Cheong-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • The purpose of this study was to quantitatively examine the biomechanical variables of Fouette turns for expert and beginner ballet dancers and to determine the difference in the variables between the two groups. sixteen female ballet dancers participated in this study. They were divided into an expert group(age, $25.38{\pm}1.92$ years; height, $168.38{\pm}4.66$ cm; mass, $49.63{\pm}4.41$ kg) and a beginner group(age, $20.88{\pm}1.13$ years; height, $161.63{\pm}7.42$ cm; mass, $48.88{\pm}3.64$ kg) depending on their ballet experience. Descriptive data were expressed as mean ${\pm}$ standard deviation (SD) for all variables including the duration, displacement of the center of the body, velocity of the center of the body, angle of the body segments, angular velocity of the body segments, ground reaction force, lower extremity torque, muscle activity, body weight, age, and body mass. An independence t-test was conducted to determine how the following variables differed between the beginners and experts: duration, displacement of the center of the body, velocity of the center of the body, angle of the body segments, angular velocity of the body segments, ground reaction force, lower extremity torque, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the experts scored high on the biomechanical variables, although all the variables were not significant. Significant differences were found in the angle of body segments, angular velocity of the body segments, lower extremity torque, and muscle activity(p<0.05). The findings of this study demonstrate that the experts have the required skill to make an improved Fouette turn. The findings may also help ballet dancers to learn and understand the Fouette turn.

A Comparative Study on Orientation density to the Front and Path Length of Rotational Axis with/without Music during Fouette Turns (발레 Fouette Turns 동작 시 음악반주 유무에 따른 정면응시도 및 회전축 이동거리 차이)

  • Cho, Nam-Gyu;Oh, Seong-Geun;Shin, Hwa-Kyung;Park, Jae-Keun;Lee, Seung-Yon;Ki, Jae-Seok;Hah, Chong-Gu
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.403-407
    • /
    • 2013
  • Fouett$\acute{e}$ turns are repeated pirouettes which begin as a normal pirouette en dehors but include a movement that allows the rotational momentum lost to friction to be regained once each revolution. The purpose of this study was to investigate on orientation density of head/trunk to the front with and without music to which dancers perform the Fouette turn in time. 10 female dancers($21.0{\pm}1.4$ years old, height; $165.3{\pm}3.9$ cm, weight: $50.5{\pm}5.7$ kg) who are the students of S University participated in this study. It took shorter time to perform one revolution of fouette turn with music (930 ms) than without music (961 ms), which reason may be the shorter time of phase 2 in which the rotational momentum is not produced but lost to fiction. Orientation density of trunk to the front was smaller with music (.176) than without music (.196), while the one of head had not significant difference between with and without music. And the path length of marker on $2^{nd}$ left metatarsal bone during one revolution was smaller with music (35.7 cm) than without music (40.2 cm) but the difference was not statistically significant (p=.267).