• Title/Summary/Keyword: Ballasting

Search Result 23, Processing Time 0.022 seconds

Float off operation of Semi-Submersible Barge with symmetrical stability casings

  • Ang, Yeong-Tae;Choe, Mun-Gil;Lee, Chun-Bo;Park, Byeong-Nam;Seong, Seok-Bu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.206-211
    • /
    • 2002
  • FPSO(FSO)같은 대형 구조물을 육상에서 건조하여 LOAD-OUT 과 FLOAT-OFF 를 수행하기 위해 한 척의 반 잠수바지로는 불가능하였다. 그래서 두 척의 반 잠수 식 바지를 HINGED TYPE 이 아닌 FIXED TYEP 으로 연결하였고 이에 따라 FLOAT OFF 시에 고려하여야 할 사항 중에서 횡강도 및 바지가 잠수 할 시점의 STABILITY 가 중요시되었다. 또한 FSO 가 잠수바지로부터 떨어져 나올 시점에서, STABILITY CASING 과 FSO 와의 충돌가능성도 고려하여야 할 사항이다. 이 논문에서는 안정성 측면에서의 반 잠수식 바지의 BALLASTING과 충돌방지 차원에서 전체적인 OPERATION에 대하여 언급하였다.

  • PDF

Filtering System Design and Structural Analysis for Intake Water of Ship's Ballast Tank (선박 밸러스트 탱크 유입수 필터링 시스템 설계 및 구조해석)

  • Yun, Sang-Kook;Park, Byung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.282-287
    • /
    • 2009
  • As current international guideline and IMO regulation give severe restrictions for ships to manage ballast water to reduce unintentional organism transfers, several ballast water treatment systems recently have been being developed together with filtration. That is because discharging ballast water from ships causes many pollutions by foreign biological invasive species. The primary treatment system being considered in this study was based on fine screen filtration technology applied to ballast water filter in ballast tank in order to reduce the load of ballast water treatment system. New ballast water filtration system was invented and analysed. The structural stress and strain analysis for ballast filtration systems which are current and invented filters were carried out using UGS and Ansys. The results showed that the structure of current filtering module was not designed to meet the requirement of sea water filtration during ballasting operation. The studies also showed that the invented design of filtration system equipped with back washing and automatic scrapper for eliminating cake of bio-species might be a potentially effective technology for ballast water management of ship's ballast tank.

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

An Algorithm for Automatic Determination and Calculation of Volumetric Spaces of Submerged Bodies (잠수체의 구획 분류 및 체적 계산을 위한 구획 결정 알고리즘)

  • Park, Inha;Nam, Jong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • Submerged bodies such as autonomous underwater vehicles (AUV) or remotely operated vehicles (ROV) are widely used in various fields of exploring underseas. Those bodies keep ballasting and deballasting for stable navigation and operation. Identifying the internal volumetric spaces of the bodies is a primary step for such an operation. Unfortunately, most CAD models given to the engineer do not properly represent the compartments since each face of a compartment exists as an independent entity rather than as a face that belongs to the compartment. In this paper, an algorithm that automatically identify the faces as a group that forms a closed volumetric space, i.e., a compartment is presented. A submerged body is sliced into a number of cross sections. Each sliced section is analyzed to yield closed loops that are sections of the compartment. Then, the associated closed loops are gathered along the longitudinal direction to form a compartment. The algorithm presented is shown to provide a practical and reasonable solution that can readily be used in various applications.

Seismic reflection imaging ahead of tunnel face using 3 component geophones (3성분 지오폰을 이용한 막장전방 예측 탄성파탐사)

  • Jo Churl Hyun;Cha Young Ho;Yang Jong Hwa;Bang Ki Moon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.412-417
    • /
    • 2005
  • To ensure the safety of the tunnelling without the loss of economy, the tunnel seismic profiling(TSP) method for the prediction ahead of tunnel face, begins to be used routinely in these days. TSP method does not interfere the tunnelling works while the horizontal drilling does, and its prediction length is longer than that of the drilling. Yet the most frequently adopted technique of TSP in Korea is the multi-shot and 2 receiver array using in-hole receivers, even though this array requires as many as 26 drill-holes for receiver installation and ballasting, which results in 3-6 hours of suspension in excavation work. In this paper, multi-receiver and lesser shot array using side-wall attached 3 component geophones is to be described to prove the efficiency in terms of the survey time as well as the reliability of the method by comparison of the predicted weak points and the face mapping results. The predictions mostly agreed with the real fractures or joint developed zones which have been confirmed during the excavation. It also has been found that TSP method can be effectively applied to perform draining ground water ahead of tunnel face by imaging the geologic discontinuities.

  • PDF

A Study for the Measurement of Global Loads on Ship Structure Using Fiber Optic Sensors (광섬유 센서를 이용한 선체 구조의 Global 하중 추정에 관한 연구)

  • Kim, Myung-Hyun;Kim, Young-Jae;Kang, Sung-Won;Oh, Min-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • Ships and offshore structures are exposed to wave and engine excitation loadings during navigation and cargo/ballasting operations. These excessive loads may cause damages to hull and may result loss of life the ship. Therefore, it is important to develop a system that allow accurate measurements of global hull loads. The objective of the study is developing a fiber optic monitoring system that is capable of monitoring, recording and warning of the vessel performance. A method for measurement of global loads on a vessel, using strain measurements from a network of fiber optic strain sensors and extensive finite-element analyses(FEA) with idealistic load cases, is presented. The method has been successfully validated on the idealized ship structure model with strain sensors.

A Study on the Characteristics Analysis of Automotive Ballast System (자동차 조명장치용 고압 방전등 시스템의 특성해석에 관한 연구)

  • Lee, Do-Ho;Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3795-3801
    • /
    • 2011
  • The mathematical simulation of voltage and current waveform of the discharge lamp is useful for the analysis and design of ballasting circuits. This paper proposes a mathematical model which has lamp power and negative voltage drop in discharge lamp. Simulation applying the proposed model has been done, and the results are compared with the experimental results. Furthermore, in the paper, the ballast components(core, transformer) was designed such that high intensity discharge could be optimized for the automotive, by applying a method simulation based design.

A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle (반자율 무인잠수정을 위한 실시간 제어 아키텍쳐)

  • LI JI-HONG;JEON BONG-HWAN;LEE PAN-MOOK;WON HONG-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF

A Study on High Efficiency Inverter Ballast Using Microprocessor (마이크로프로세서를 사용한 고효율 인버터 안정기에 관한 연구)

  • 정재륜
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.88-94
    • /
    • 1999
  • This paper describes the high efficiency inverter ballast circuit using very cheap microprocessor, which has been developed by the author. A variety of soft-switching techniques have been proposed to reduce the switching losses and EMI publems that accur with higher switching frequencies in switched inverter ballast 1be inverter ballast circuit, which employs a temperature sensing circuits has been also proposed to improve starting performance of the fluorescent lamps. That is, the inverter ballast circuit, which employs a soft-starting circuits and soft-switching techniques to implement the power factoc correcticn and to mitigate of power-loss and iocrease a life time of the fluorescent lamps, has become an attractive performance forballasting the fluorescent lamps. In this paper, the operation and the control of the inverter ballast are described in detail and experimental results are presented. As the experimental results, when enviroment temperatture is at TEX>$-40^{\circ}C$, the inverter ballast circuit has low THD(4.8%) of the input current and large power factor(98%) of the lamp current. The proposed improved ballast circuit awears to be a good performance for ballasting fluorescent lamps. lamps.

  • PDF