• Title/Summary/Keyword: Ballast Water Management

Search Result 66, Processing Time 0.02 seconds

Comparison of sampling method of phytoplankton for type approval of ballast water management system (선박평형수처리장치 형식승인을 위한 식물플랑크톤 샘플링 방법 비교)

  • Jang, Pung-Guk;Hyun, Bonggil;Lee, Woo-Jin;Choi, Keun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.426-433
    • /
    • 2020
  • This study aimed to compare the pretreatment methods of phytoplankton for type approval of the Ballast Water Treatment System (BWMS). The International Maritime Organization (IMO) and the United States Maritime Police (USCG) use two different test methods for this purpose. To compare the two methods, a test for concentration and non-concentration was performed with cultured and natural phytoplankton, and samples from the land-based BWMS test. The extent of damages caused by the process of concentration varied between cultured and natural species, indicating differences depending on the physiological and morphological characteristics of the species. In the land-based test, in the control water with a high biological population, the number of non-concentrated samples was about twice as high as that of the concentrated samples. There was no distinct difference between the two methods in the treated water with a low biological population. Thus, although there is a difference between concentration and non-concentration for phytoplankton sampling, the concentration method can be applied as a method of evaluating BWMS performance. However, a method for evaluating whether live species in treated water may be lost or damaged during the concentration process of sampling should be developed and validated.

Optimum Selection of BWMS type by AHP for BWMS Development (선박평형수 처리장치 개발시 AHP 기법을 이용한 최적 처리방식 선정에 관한 연구)

  • Lee, Sang Won;Kim, Dong Joon;Seo, Won Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ballast water in ship operation is essential for a safe voyage. However ballast water can contain unwanted organisms that are the cause of disturbing the ecosystem by the transfer of potential invasive species. To prevent the destruction of the environment, the International Convention for the Control and Management of Ship's Ballast Water and Sediments(BWM Convention) was adopted in 2004. BWMS (Ballast Water Management System) has been developed to prevent the transportation of organisms to another region in order to fulfill the requirements IMO (International Maritime Organization) regulations. Nowadays there are about 50 approved Ballast Water Management Systems of various types globally. The most common BWMS types are UV (Ultra Violet), Electrolysis and Ozone. Among these types there are many difficulties in determining the optimum type of BWMS which can be suitable for the user and designer's requirements. The main objective of this research is to select the best BWMS type by using AHP. To apply AHP, the most important criteria for the BWMS development are derived by users and designers. From our results, we can give a guide BWMS type to the developers of BWMS.

Study of Factors for development of Advanced Media filter for Ballast water Treatment (밸러스트 수 처리용 메디아 필터 개발을 위한 여과특성에 관한 연구)

  • Park, Seon-Jeong;Lim, Jae-Dong;Kim, Dong-Geun;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.499-503
    • /
    • 2008
  • As the conference result of MEPC in IMO, development of ballast water management system corresponding to newly established ballast water management standard (D2 regulation) of shipping is being made an active progress over the whole world. The ballast water management system should treat particular material of more than $10{\mu}m$ in high capacity of more than 500t per hour in the event of filtration process. Also, it is very difficult to develop a practical management system since a limited element which a narrow space of the ship should be designed in the minimal volume is assumed. Therefore, the study promoted a study on the next generation auto back wash media filter to overcome such a limited element. Also, the study performed pressure and flux measurement test followed by thickness of each filter medium for filtration by each size to grasp a relation between absorption and pressure at the time of vacuum filtration and mechanical analysis and turbidity change observation of filtered water after vacuum filtration.

Counting Harmful Aquatic Organisms in Ballast Water through Image Processing (이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정)

  • Ha, Ji-Hun;Im, Hyo-Hyuk;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • Ballast water provides stability and manoeuvrability to a ship. Foreign harmful aquatic organisms, which were transferred by ballast water, cause disturbing ecosystem. In order to minimize transference of foreign harmful aquatic organisms, IMO(International Maritime Organization) adopted the International Convention for the Control and Management of Ship's Ballast Water and Sediments in 2004. If the convention take effect, a port authority might need to check that ballast water is properly disposed of. In this paper, we propose a method of counting harmful aquatic organisms in ballast water thorough image processing. We extracted three samples from the ballast water that had been collected at Busan port in Korea. Then we made three grey-scale images from each sample as experimental data. We made a comparison between the proposed method and CellProfiler which is a well known cell-counting program based on image processing. Setting of CellProfiler is empirically chosen from the result of cell count by an expert. After finding a proper threshold for each image at which the result is similar to that of CellProfiler, we used the average value as the final threshold. Our experimental results showed that the proposed method is simple but about ten times faster than CellProfiler without loss of the output quality.

Consideration on the Concentration of the Active Substances Produced by the Ballast Water Treatment System (선박평형수 처리장치의 활성물질 농도에 관한 고찰)

  • Kim, Eun-Chan;Oh, Jeong-Hwan;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • The International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Thirty-four ballast water treatment systems were granted IMO active substance basic approval, among which twenty systems were granted final approval. This paper is an in-depth consideration of the mechanism principles of the treatment systems that received active substance basic or final approval from IMO, and on the concentration of Total Residual Oxidant (TRO). The TRO maximum allowable discharge concentration was reduced by neutralization equipment, resulting with a concentration lower than 0.2 ppm. However, between various treatment systems TRO maximum allowable dosage showed large differences, ranging from 1 to 15 ppm. The discrepancies of treatment allowable dosage concentration between different treatment systems are largely due to the properties of species and water conditions such as the temperature and turbidity, rather than the characteristics of treatment systems and the type or presence of filters etc.

A Study of Characteristics on Water Quality and Phytoplankton in Ship's Ballast Water Originating from International Ports of China (우리나라 주요 국제항에 입항하는 중국 기원 선박의 평형수내 수질 및 식물플랑크톤 특성 연구)

  • Jang, Pung-Guk;Hyun, Bonggil;Jang, Min-Chel;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.821-828
    • /
    • 2016
  • The water quality and phytoplankton presence in the ballast water (BW) of 37 vessels originating from the international ports of China were investigated to facilitate negotiations for exemptions to the Ballast Water Management Convention (BWM Convention). The shortest duration given BW spent in a vessel was $3.91{\pm}4.61days$ in area "A", which included the Bohai Sea. Total suspended solids, dissolved organic carbon, and particulate organic carbon ranged from 1.80 to $266mg\;L^{-1}$, from 1.09 to $5.79mg\;L^{-1}$, and from 0.17 to $3.65mg\;L^{-1}$, respectively. A low average concentration of nutrients was measured in BW from area "C", but the concentration of nutrients in BW from area "B" (around the Changjiang estuary) was high, which may be related to the relevant supply of freshwater. A high chlorophyll-a concentration (> $1{\mu}g\;L^{-1}$) was measured in six vessels, three of which carried BW in the area "A". High abundance of phytoplankton (> $10,000cells\;L^{-1}$) was measured in four vessels, two of which carried BW in the area "C". Vessel No. 37, originating from Hong Kong Bay in area "C", showed a high density of dinoflagellates. The results suggest that BWM Convention exemption negotiations with China should be performed cautiously.

Consideration on the Ballast Water Treatment System Technology and its Development Strategies (IMO 선박평형수 처리장치 기술과 발전 방향에 대한 고찰)

  • Kim, Eun-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.349-356
    • /
    • 2012
  • For smooth implementation of the IMO Ballast Water Management Convention that is to come into effect in the near future, IMO and Member States are working on the development of various technologies and establishment of legislative action. Ballast water treatment systems are essential, yet difficult technologies, as they need not only to treat living organisms, but also define whether they are viable or not, count the number of viable organisms, and present quantitative results of the concentration of active substances. Despite the fact that the Convention is looming in the near future, the issues mentioned above obstruct the setup of consensual technologies for performance reliability of the treatment system and analysis method of efficacy test results. This paper considers the unsolved issues of the ballast water treatment technologies, and presents guidelines to solve these issues.

Applicability of Fluorescein Diacetate (FDA) and Calcein-AM to Determine the Viability of Marine Plankton (FDA와 Calcein-AM 방법을 이용한 해양플랑크톤 생사판별기법)

  • Baek, Seung-Ho;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.349-357
    • /
    • 2009
  • Ballast water is widely recognized as a serious environmental problem due to the risk of introducing non-indigenous aquatic species. In this study we aimed to investigate measures which can minimize the transfer of aquatic organisms from ballast water. Securing more reliable technologies to determine the viability of aquatic organisms is an important initiative in ballast water management systems. To evaluate the viability of marine phytoplankton, we designed the staining methods of fluorescein diacetate (FDA) and Calcein-AM assay on each target species belonging to different groups, such as bacillariphyceae, dinophyceae, raphidophyceae, chrysophyceae, haptophyceae and chlorophyceae. The FDA method, which is based on measurements of cell esterase activity using a fluorimetric stain, was the best dye for determining live cells of almost all phytoplankton species, except several diatoms tested in this study. On the other hand, although fluorescence of Calcein-AM was very clear for a comparatively longer time, green fluorescence per cell volume was lacking in most of the tested species. According to the Flow CAM method, which is a continuous imaging technique designed to characterize particles, green fluorescence values of stained cells by FDA were significantly higher than those of Calcein-AM treatments and control, implying that the Flow CAM using FDA assay could be adapted as an important tool for distinguishing living cells from dead cells. Our results suggest that the FDA and Calcein-AM methods can be adapted for use on phytoplankton, though species-specific characters are greatly different from one organism to another.

Development of Marine Virus-like Particles Live/Dead Determination Method for the Performance Evaluation of Ballast Water Treatment System (선박평형수처리장치 성능 평가를 위한 해양 바이러스 생사판별 방법 개발)

  • Hyun, Bonggil;Woo, Joo-Eun;Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Bae, Mi-Kyung;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.431-438
    • /
    • 2021
  • To prepare more stringent regulations for USCG Phase II ballast water management, this study investigated the staining efficiency of SYBR Green I(SGI) and SYBR Gold(SG) on the virus-like particle (VLP). A dye with high staining efficiency was applied to the treated water that was passed through the ballast water treatment system (BWTS). VLP staining was observed most clearly under the 100-fold and 200-fold dilution of the stock solution when the volume of filtered samples was 0.5 mL to 2 mL. The staining efficiency of SGI and SG did not show a significant difference. On the other hand, the green fluorescence of viruses in the sample stained with SGI was more pronounced than in the samples stained with SG (expressed yellow fluorescence), making it easier to observe. The abundance of VLP in the test water and control water treatments that did not pass through the two types of BWTS (electrolysis type, UV + electrolysis type) was approximately 109 - 1010 VLP 100 mL-1. In contrast, no stained VLP was observed in the treated water treatments. Moreover, SGI was confirmed to be effectively stained under various salinity conditions, including seawater, brackish water, and freshwater. Further verification tests and development of staining methods under various BWTS are required, but the SGI staining method is believed to be a good alternative to the VLP live/dead determination of the USCG Phase II type approval test.

Design and Fabrication of a Ballast Water Treatment System Using UV Lamps (자외선램프를 이용한 선박평형수 처리시스템의 설계 및 제작)

  • Pyo, Tae-Sung;Cheon, Sang-Gyu;Park, Dae-Won;Choi, Sung-Kuk;Kim, Seong-Yeon;Kil, Gyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.952-958
    • /
    • 2009
  • The International Maritime Organization (IMO) has adopted the ballast water management convention at a diplomatic conference in early 2004 that all ships should be equipped with a treatment system from 2010 gradually. In this paper, the disinfection characteristic of ultra-violet (UV) rays was studied and a ballast water treatment system (BWTS) which can treat $50m^3$/h sea water was manufactured. The system consists of a disinfection chamber with six 3.5 kW UV lamps which are operated by magnetic ballasts, a programmable logic controller (PLC) and set of pipe lines. The biological disinfection efficacy of the prototype BWTS was evaluated following the IMO rules using zooplankton such as Artemia and Rotifer species for the size over $50{\mu}m$, and phytoplankton such as Tetraselmis and Thalassiosira species for the size between 10 to $50{\mu}m$. From the experimental results, the disinfection efficacy was 99.99 % that meets the IMO requirement. However, more studies on an energy saving system are needed because the consumption power of the prototype system is as high as over 21 kWh for $50m^3$/h.