• 제목/요약/키워드: Ball-Joint Center

검색결과 51건 처리시간 0.024초

공격위치에 따른 핸드볼 스텝슛의 운동학적 분석 (Kinematical Analysis of Handball Step Shoot according to Attack Position)

  • 강상학
    • 한국운동역학회지
    • /
    • 제15권4호
    • /
    • pp.55-66
    • /
    • 2005
  • The present study used a video analysis system to quantify the kinematical data of step shoot motion by male university handball players. From the results of analyzing dynamic variables of step shoot motion according to shooting direction were drawn conclusions as follows. 1. The height of release was proportional to the height of players, and the height of release appeared low in left-side attacks. This is probably because the left-right-throwing angle is larger in left-side attacks than that in center attacks and right-side attacks and, as a result, the throwing arm is lowered down in throwing. 2. The leftward inclination angle of the body was larger in order of right-side attacks > center attacks > left side attacks. 3. Players' throwing form was close to three quarter style in left-side attacks. In center and right-side attacks, the arm was somewhat more upright but still it was more three quarter style than overhand style. 4. The front-rear throwing angle at the moment of release was much higher in right-side attacks than in left-side ones. This is probably because the point of time for releasing the ball is usually late in right-side attacks and, as a result, the front-rear throwing angle becomes quite large. 5. The contribution of body parts on the ball speed was higher in order of the forearm > upper arm, hand > shoulder joint. 6. In players whose distance between the two legs at the moment of release, their body usually did not incline to the side much. Thus it is considered necessary to correct the right leg in their shooting motion. 7. According to the result of analyzing throwing form, the speed of the ball at the moment of leaving the hand was faster in right-side attacks than in left-side and center attacks.

인공관절에 사용되는 UHMWPE의 내마모성 향상에 관한 연구 (An enhancement in wear property of UHMWPE used in joint prosthesis)

  • 김경태;이창우;최재봉;최귀원
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.3-6
    • /
    • 1996
  • The Ultra-high molecular weight polyethylene (UHMWPE) is exclusivity used as the articulation component with metal or ceramic materials in artificial joint prosthesis because of its good mechanical properties. In the long term however, wear of UHMWPE causes complex problems and hence causes loosening of He prosthesis. In this study, we tried to enhance the wear property of UHMWPE by attaching a hydrophilic graft on the UHMWPE surface and by improving surface hardness without deteriorating the mechanical properties of UHMWPE. This was achieved by ion implantation and by ${\gamma}$-irradiation to the surface in acrylic acid solution and by photo-polymerization in divinylbenzen (DVB), diallysophthalate (DAIP) solution. The wear test was performed by a wear testing machine of ball-on-disk type devised by the authors. The UHMWPE with hydrophlic surface and increased surface hardness developed by above treatments showed less volumetric wear.

  • PDF

어깨의 움직임을 중심으로 한 상지재활로봇 NREX의 착용감 개선 (Improved Wearability of the Upper Limb Rehabilitation Robot NREX with respect to Shoulder Motion)

  • 송준용;이성훈;송원경
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.318-325
    • /
    • 2019
  • NREX, an upper limb exoskeleton robot, was developed at the National Rehabilitation Center to assist in the upper limb movements of subjects with weak muscular strength and control ability of the upper limbs, such as those with hemiplegia. For the free movement of the shoulder of the existing NREX, three passive joints were added, which improved its wearability. For the flexion/extension movement and internal/external rotation movement of the shoulder of the robot, the ball lock pin is used to fix or rotate the passive joint. The force and torque between a human and a robot were measured and analyzed in a reaching movement for four targets using a six-axis force/torque sensor for 20 able-bodied subjects. The addition of two passive joints to allow the user to rotate the shoulder can confirm that the average force of the upper limb must be 31.6% less and the torque must be 48.9% less to perform the movement related to the axis of rotation.

Development of a new ball-type phantom for evaluation of the image layer of panoramic radiography

  • Yeom, Han-Gyeol;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제48권4호
    • /
    • pp.255-259
    • /
    • 2018
  • Purpose: This study proposes a new ball-type phantom for evaluation of the image layer of panoramic radiography. Materials and Methods: The arch shape of an acrylic resin phantom was derived from average data on the lower dental arch in Korean adult males. Metal balls with a 2-mm diameter were placed along the center line of the phantom at a 4-mm mesiodistal interval. Additional metal balls were placed along the 22 arch-shaped lines that ran parallel to the center line at 2-mm buccolingual intervals. The height of each ball in the horizontal plane was spaced by 2.5 mm, and consequently, the balls appeared oblique when viewed from the side. The resulting phantom was named the Panorama phantom. The distortion rate of the balls in the acquired image was measured by automatically calculating the difference between the vertical and horizontal length using $MATLAB^{(R)}$. Image layer boundaries were obtained by applying various distortion rate thresholds. Results: Most areas containing metal balls (91.5%) were included in the image layer with a 50% distortion rate threshold. When a 5% distortion rate threshold was applied, the image layer was formed with a small buccolingual width along the arch-shaped center line. However, it was medially located in the temporomandibular joint region. Conclusion: The Panorama phantom could be used to evaluate the image layer of panoramic radiography, including all mesiodistal areas with large buccolingual width.

넙다리뒤근육의 유지-이완기법이 무릎관절 각도 증가에 미치는 효과 (Effects of Hamstring HR Technique on Knee Joint Angle Increase)

  • 정은호;김지혁
    • 대한정형도수물리치료학회지
    • /
    • 제24권2호
    • /
    • pp.75-81
    • /
    • 2018
  • Background: The purpose of this study was to investigate the effect of various relaxation techniques on various dysfunction problems caused by shortening of the sagittal muscles. Method: The subjects were 44(18 males, 26 females). The subjects were composed of 3 groups. The experimental group consisted of 14 patients with proprioceptive neuromuscular facilitation stretching (PNF) technique, control group A 15 patients with self myofacial release (SMR) ball exercise, and control group B with 15 patients with Sling exercise. After 3 weeks of relaxation on the hamstring muscle, the length of the hamstring muscle before and after the intervention was compared. Results: The results of relaxation exercise of the snake muscles applied to passive PNF group, SMR ball group, and Sling relaxation group are as follows. 1. In the passive PNF group, the muscle length of the hamstring muscle was significantly increased after the intervention. 2. The muscle length of the hamstring muscle was significantly increased after the intervention in the SMR ball group. 3. Sling relaxation group significantly increased the muscle length of the hamstring muscle after sling exercise intervention. 4. Passive PNF group showed the greatest change in muscle length before and after intervention than SMR ball group and Sling relaxation group. Conclusion: Passive PNF relaxation therapy, SMR ball relaxation therapy, and Sling relaxation therapy applied to the hamstring muscle were effective in increasing muscle length of the hamstring muscle. PNF relaxation therapy showed the most significant effect after 3 weeks intervention.

Measuring hand kinematics in handball's game: A multi-physics simulation

  • Kun, Qian;Sanaa, Al-Kikani;H. Elhosiny, Ali
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.535-547
    • /
    • 2022
  • Handball sport, as its name postulates, is a team sport which highly physical workout. During a handball play, several ball impacts are applied on the hands resulting vibration in the forearm, upper arm, shoulders and in general in whole body. Hand has important role in the handball's game. So, understanding about the dynamics and some issues that improve the stability of the hand is important in the sport engineering field. Ulna and radius are two parallel bones in lower arm of human hand which their ends are located in elbow and wrist joint. The type of the joint provides the capability of rotation of the lower arm. These two bones with their ends conditions in the joints constructs a 4-link frame. The ulna is slightly thinner than radius. So, understanding about hand kinematics in handball's game is an important thing in the engineering field. So, in the current work with the aid of a multi-physics simulation, dynamic stability analysis of the ulna and radius bones will be presented in detail.

탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석 (Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis)

  • 이용식;이종훈
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

골프 스윙 시 스탠스에 따른 하지의 역학적 분석 (Biomechanical Analysis of Lower Limb on Stance during Golf Swing)

  • 윤세진;설정덕;우병훈
    • 한국응용과학기술학회지
    • /
    • 제38권2호
    • /
    • pp.532-542
    • /
    • 2021
  • 본 연구의 목적은 골프 스윙 시 3가지 스탠스에서 클럽헤드 스피드와 볼의 정확성을 유지하기 위한 신체 전략을 하지의 운동학적 변인과 지면반력 변인을 통하여 알아보고자 하였다. 연구의 대상은 공식 핸디캡이 2인 남자골프선수 10명으로 하였다. 모든 대상자들은 스탠스 조건(스퀘어, 오픈, 클로즈드)에 따라 어드레스 자세를 유지한 후 스윙을 수행하였다. 3차원 동작분석 시스템과 지면반력기를 이용하여 각 스탠스에 따라 7번 아이언 풀스윙을 수행한 결과를 산출하였다. 연구결과로 신체중심의 변위, 고관절 각변위, 무릎관절 각변위는 차이가 나타나지 않았다. 발목관절 각변위는 어드레스부터 다운스윙까지 왼쪽에서 오픈 스탠스가 저측굴곡이 크게 수행되었고, 오른쪽에서 클로즈드 스탠스에서 저측굴곡이 크게 수행되었다. 지면반력에서 전후, 수직은 차이가 없었지만, 어드레스부터 테이크백까지 왼발은 오른쪽 방향, 오른발은 왼쪽 방향의 힘이 오픈이 클로즈드 스탠스보다 크게 나타났다. 결론적으로 다양한 스탠스에도 불구하고, 임팩트 시 동일한 자세를 유지하는 것이 클럽헤드 스피드와 볼의 방향에 긍정적으로 작용되는 것으로 판단된다.

열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가 (Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints)

  • 정진성;김호경
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

Ti 합금을 이용한 항공기용 Flexible PTO 샤프트 개발 시험 (Development Test for Flexible PTO Shaft Made of Ti Alloy for Aircraft)

  • 이주홍;강보식;유현석;이지만;조해용
    • 대한기계학회논문집A
    • /
    • 제40권8호
    • /
    • pp.759-765
    • /
    • 2016
  • 항공기 등에 사용되는 Flexible PTO(Power Take-Off) 샤프트는 스프링 특성을 좋게 하기 위해 여러장의 얇은 멤브레인을 용접한 형태로 1950년대에 이미 개발됐으며, AMAD(Aircraft Mounted Accessory Drive) 기어박스와 EMAD(Engine Mounted Accessary Drive) 기어박스 사이에서 회전동력을 전달한다. 이런 종류의 샤프트는 가볍고 특히 스프링 특성이 좋기 때문에 축 정렬이 틀어진 고속회전 상태에서도 안정적으로 회전동력을 전달할 수 있어 대부분의 전투기에 사용된다. 이번 연구에서 티타늄 합금으로 개발된 Flexible PTO 샤프트의 구조해석을 통해 제품의 안전성을 확인하였고, 실제 실험실에서 진행된 고속회전 시험에서 굽힘과 비틀림 부하를 동시에 인가하여 샤프트의 고주기 피로에 대한 내성을 실증하였다. 또한, 고주기 피로 시험 조건에서 항공기용 볼 조인트의 마모 특성 분석을 통해 수명을 예측하였다.