• Title/Summary/Keyword: Ball table

Search Result 74, Processing Time 0.033 seconds

A study on the measurement of rotary table error with 5-axis CNC machine (5축CNC공작기계의 회전테이블 오차 측정에 관한 연구)

  • SUH, S.H.;JUNG, S.Y.;LEE, E.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.84-92
    • /
    • 1997
  • The purpose of this study is to develop a geometric error model and path compensation algorithm for rotating axes of the 5-axis machine tools, by a method to calibrate a rotary table using one master ball and three LVDTs. It was developed a new methodology to measure 3 translation errors of the rotary table and with a compensation procedure for setup errors of the master ball. The method is experimentally verified using a ball-table and on-machine inspection method. The results showed that the geometric error models with the path compensation strategy can be practically used as a means for improving the accuracy of the machine tools with rotary table.

  • PDF

Pulmonary Function Tests of Athletes (각종(各種) 운동선수(運動選手)의 폐기능검사성적(肺機能檢査成績))

  • Cho, Ching;Yoon, Pyung-Jin
    • The Korean Journal of Physiology
    • /
    • v.15 no.1
    • /
    • pp.45-51
    • /
    • 1981
  • The aim of this study was to investigate the pulmonary function tests of athletes related to Running, Swimming, Cycle, Taekwando, Wrestling, Boxing, Yudo, Badminton, Base-ball, Soccer, Hand-ball, Basket-ball and Volley-ball. Subjects were 269 athletes from 18 to 22 years of age. They were college students and citizens. The results are as follows: 1) Frequency of breath: (cycles/min., $M{\pm}S.D$) Running shows $13{\pm}3.6$, Swimming $12{\pm}3.2$, Cycle $13{\pm}3.4$, Taekwondo $12{\pm}4.0$, Wrestling $14{\pm}2.5$, Boxing $15{\pm}4.5$, Yudo $13{\pm}3.2$, Badminton $14{\pm}5.7$, Base-ball $15{\pm}6.2$, Soccer $13{\pm}2.5$, Hand-ball $14{\pm}2.5$, Basket-ball $12{\pm}5.6$, Volley-ball $12{\pm}4.2$(Table 2, Fig. 1). 2) Vital capacity: (1, $M{\pm}S.D$) Running shows $4.29{\pm}0.634$, Swimming $4.30{\pm}0.608$, Cycle $4.08{\pm}0.718$, Taekwondo $4.32{\pm}0.595$, Wrestling $4.40{\pm}0.663$, Boxing $4.45{\pm}0.779$, Yudo $4.58{\pm}0.389$, Badminton $3.98{\pm}0.556$, Base-ball $3.99{\pm}0.617$, Soccer $4.42{\pm}0.728$, Hand-ball $4.23{\pm}0.397$, Basket-ball $4.28{\pm}0.426$, Volley-ball $4.60{\pm}0.620$(Table 2, Table 3, Fig. 2). 3) Tidal volume: (ml, $M{\pm}S.D$) Running shows $615{\pm}180$, Swimming $603{\pm}121$, Cycle $529{\pm}189$, Taekwondo $726{\pm}112$, Wrestling $512{\pm}90$, Boxing$622{\pm}134$, Yudo $583{\pm}89$, Badminton $672{\pm}121$, Base-ball $714{\pm}97$, Soccer $579{\pm}89$, Hand-ball $507{\pm}69$, Basket-ball $628{\pm}133$, Volley-ball $597{\pm}144$(Table 2, Fig.3). 4) Breath holding time : (sec., $M{\pm}S.D$) Running shows $64{\pm}18.8$, Swimming $81{\pm}23.0$, Cycle $54{\pm}13.6$, Taekwondo $55{\pm}11.8$, Wrestling $78{\pm}12.5$, Boxing $63{\pm}9.6$, Yudo $71{\pm}14.4$, Badminton $62{\pm}9.8$, Base-ball $58{\pm}8.9$, Soccer $65{\pm}10.9$, Hand-ball $66{\pm}7.6$, Basket-ball $62{\pm}8.8$, Volley-ball $57{\pm}13.4$(Table 2, Fig.4).

  • PDF

Performance Evaluation of Radial Error of a Rotary Table at Five-axis Machine Tool (5축 공작기계에서 회전 테이블의 반경 오차 성능 평가)

  • Lee, Kwang-Il;Yang, Seung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.208-213
    • /
    • 2012
  • In this paper, the radial error of a rotary table at five-axis machine tool is evaluated by utilizing ISO 230-2 and estimation method using double ball-bar. The geometric error of a rotary table is defined as position dependent geometric errors or position independent geometric errors according to their physical character. Then estimation method of geometric errors using double ball-bar is simply summarized including measurement path, parametric modeling and least squares approach. To estimate representative radial error, offset error, set-up error which affect to the double ball-bar data, mean value of measured data including CCW/CW-direction are used at estimation process. Radial errors are separated from measured data and used for evaluation with ISO 230-2. Finally, suggested evaluation method is applied to a rotary table at five-axis machine tool and its result is analyzed to improve the accuracy of the rotary table.

Dynamics in Carom and Three Cushion Billiards

  • Han Inhwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.976-984
    • /
    • 2005
  • This paper presents the analysis results of dynamics in the billiards game within the frame­work of rigid-body mechanics and a numerical simulation program. The friction exists between the ball and the table bed as well as between the ball and the rail. There are three parts in the dynamic behavior of the ball on the table bed; motion of the ball on the table bed, collision between balls, and collision between the ball and the cushion. During the development of the simulation program, the dynamics problems such as rolling motion and three-dimensional frictional impact motion have been analyzed in detail. The theoretical issues are implemented into a viable graphic simulation program and its efficacy is demonstrated through the experi­mental validation of the billiards game. The resulting analysis results are verified quantitatively and qualitatively using high-speed video camera. Through the experimental tests, it was found that the physical parameters such as coefficients of restitution and friction vary according to the motion variables and corresponding empirical formulations were developed. The simulation and experimental results agree well.

Geometric Errors Estimation of a Rotary Table using Double Ball-bar (볼바를 사용한 회전 테이블의 기하학적 오차 추정)

  • Lee, Kwang-Il;Lee, Dong-Mok;Kweon, Sung-Hwan;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.98-105
    • /
    • 2010
  • In this paper, double ball-bar is used to estimate the geometric errors of a rotary table, which includes one-axial motion, two-radial motions and two-tilt motions, except the angular positioning error. To simplify the measurement procedures, three measurement steps have been designed and developed. At each measurement step, one end of the double ball-bar is fixed at the nose of spindle and the other end is located on the rotary table. And specific circular test path is planned to keep the distance between two balls as constant at ideal case. The relationship including the geometric errors of a rotary table and the measured distance between two balls which is distorted by the geometric errors is defined by using ball-bar equation. Each geometric error is modeled as $4^{th}$ order polynomial considering $C^1$-continuity. Finally the coefficients of polynomial are calculated by least-square method. Simulation is done to check the validation of the suggested method considering set-up errors and measurement noise. Suggested method is applied to estimate geometric errors of a rotary table of a 5-axis machine tool.

A study on the calibration of rotary table with NC machine (NC 공작기계의 Rotary Table 오차 측정 및 보상에 관한 연구)

  • 정세용;서석환;이응석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.636-642
    • /
    • 1996
  • 본 연구는 4축 또는 5축 NC 공작기계에 사용되는 Rotary Table의 오차를 측정하고 이를 보정하기 위한 연구이다. 먼저 일반적인 Rotary Table에 대한 오차모델이 설정되었으며, Rotary Table에서 존재하는 6가지의 오차를 각각 측정하였다. 측정방법은 3개의 길이오차는 1 개의 정밀볼(Master ball)과 3개의 LVDT, 3개의 각도 오차는 6각 폴리곤과 Autocollimator를 사용하여 측정하였다. 측정된 오차 성분들은 오차모델을 이용하여 보상치를 계산하였으며, 이 값은 추후 원래의 측정오차와 비교하는 방법으로 모델의 정확성을 검증할 것이다. NC 공작기계상에서 Rotary Table의 실제 보상 실험을 위하여 30$^{\circ}$간격으로 정밀한 볼이 장착된 볼-테이블을 설계하였다.

  • PDF

Changes of Various Balls Velocity under the Different Surface Conditions after Impact (충돌 후 지면 조건에 따른 다양한 볼의 속도변화에 관한 연구)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • The purpose of this study was to investigate the changes of various balls velocity under the different surface conditions after impact. For this study, four different balls were used which are golf ball, tang-tang ball, table tennis ball, and iron ball. And two different types of ground conditions were used which are artificial grass green and glass green. Movements of putter head and ball were recorded with 2 HD video cameras(60 Hz, 1/500s shutter speed). Small size control object($18.5cm{\times}18.5cm{\times}78.5cm$) was used in this study. To transfer the same amount of kinetic energy to the ball, pendulum putting machine was used. Analyzing the process of impact and the ball movement, a putter was digitized the whole movement but the ball was digizited within the 50cm movement. Velocities were calculated by the first central difference method(Hamill & Knutzen, 1995). Putter head velocities were about 112.2cm/s-116.2cm/s at impact. Maximum ball velocities were appeared 0.08s-0.10s after impact no matter what the ground conditions are. Table tennis ball recorded higher ball velocities than the other ball velocities and iron ball recorded the lowest ball velocity in this group. But Table tennis ball was influenced with the frictional force and immediately was decreased at the artificial grass green condition. If an object is received the kinetic energy under the static condition(v=0cm/s), the object recorded the maximum velocity shortly after the impact and then decreased the velocity because of the frictional force. The ball distance from the start position to the peak velocity position is about 6cm-10cm under the 112.2cm/s-116.2cm/s putting velocity with putter. 0.25 seconds later after impact balls were placed 40cm distance from the original position except iron ball. In this study, ball moving distances were too short therefore it was not possible to investigate the reactions after the translational force is disappeared. Rotational force would play a major role at the end of the ball movement. Future study must accept two things. One is long distance movement of ball and the other is balanced ground. Three-piece ball is a good item to investigate the golf ball movement on the different surface conditions.