• 제목/요약/키워드: Ball speed

검색결과 622건 처리시간 0.041초

터보펌프 볼 베어링의 마찰 토크 평가 (Evaluation of Friction Torque for a Turbopump Ball Bearing)

  • 전성민;곽현덕;김진한
    • Tribology and Lubricants
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2011
  • Rolling contact ball bearings are utilized almost exclusively for liquid propellant rocket engine turbopump. Turbopump ball bearings are required to endure high speed and high load for a poor lubricated condition in cryogenic environment. To evaluate bearing heat generation performance, friction torque is investigated as a function of rotation speed, bearing load and cooling flow rate through an experimental study using water coolants. Radial and axial loads are simultaneously applied to the test bearing by gas pressurized cylinder rod. Endurance performance of bearing has been also verified under the bearing required load for operating condition during total accumulated test time 2,100 sec.

볼 밀링 조건이 TiH2 분말의 미세조직과 탈수소화 거동에 미치는 영향 (Effect of Ball Milling Conditions on the Microstructure and Dehydrogenation Behavior of TiH2 Powder)

  • 김지영;이의선;최지원;김영민;오승탁
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.132-136
    • /
    • 2024
  • This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 ㎛. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 ㎛. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.

고속 회전하는 볼베어링 내 공기 유동구조 수치해석 연구 (A Computational Investigation on Airflow Structures Inside a Ball Bearing at High-Speed Rotation)

  • 김동주;오일석;홍성욱;김경진
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.745-750
    • /
    • 2011
  • In a hope to better understand the flow and convective heat transfer characteristics inside a ball bearing, air flow between the rolling elements and raceways at high speed bearing rotation is numerically investigated using a simplified inner geometry of bearing and a CFD technique. Flow simulation results reveal the pressure distribution of airflow and the shear stress distribution on the ball surface, of which nonuniformity becomes significant with the increasing rotational speed. Also, the local point of maximum shear stress coincides with the stagnation flow area on the surface of rolling elements. A complex pattern of three-dimensional vortex structures is found in the air flow due to the relative motion of bearing elements and three different types of vortex pairs exist around the rotating and orbiting rolling elements.

볼 엔드밀을 통한 자유곡면의 고속가공에서 절삭방향에 따른 가공성 평가 (Machinability Evaluation with Cutting Direction in High Speed Machining of Free Form Surface through Ball End Milling)

  • 김경균;강명창;이득우;김정석
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.84-89
    • /
    • 2001
  • In recent years, there is increasing demand of esthetic design and complex function in aerospace, automobile and die/mold industry, which brings into limelight high-precision, high-efficient machining of sculptured surface. This paper deals with the establishment of the optimal tool path on free form surface in high speed ball end milling. Ball end milling is widely used for free form surface die and mold. In this machining, the cutting direction was changed with tool path. The cutting characteristics, such as cutting force and surface form are varied according to the variation of cutting directions. In this paper, the optimal tool path with down cutting in free form surface cutting is suggested.

  • PDF

볼엔드밀 공구에 의한 사각형상 가공시 공구 휨에 따른 절삭력 특성 (Cutting Force Characteristics and Tool Deflection When Machining Rectangular Shapes with a Ball End Mill)

  • 김인수;김상현;이동섭;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.26-32
    • /
    • 2019
  • Ball end mills used for high-speed and high-precision machining require longer machining time than flat end mills or face cutters, since the tool diameter is limited and the rigidity is reduced by the characteristics of the tool's cutting edge: at the top end of the tool, the cutting speed approaches zero and hardly removes any material. Because there is little material removal at the top end of the ball end mill, the outer cutting edge performs the majority of the work; this irregular cutting force deforms the tool and shortens its life. In this study, we attached an eddy-current sensor to a tool to measure the deformation from the cutting force and we used a tool dynamometer to measure the cutting force. We found that the change in cutting force is dependent on the change in feed rate during square-shaped processing and, as the feed rate is accelerated, the cutting force also increases. Higher cutting forces increase tool deformation.

터보펌프용 극저온 볼 베어링의 성능검증 (Feasibility Verification of Cryogenic Ball Bearings for a Turbopump)

  • 곽현덕;전성민;김진한;조광래;김선용;우관제
    • Tribology and Lubricants
    • /
    • 제20권4호
    • /
    • pp.177-182
    • /
    • 2004
  • In a turbopump cryogenic ball bearings are used to carry static and hydraulic loads, and these ball bearings must stand up to high load and speed in cryogenic circumstance. Verification of bearing performance is crucial to successful development of a turbopump. In this paper, focusing on the turbopump under developing by KARI, the performances of 203 and 207 bearings are verified through the series of tests simulating the real operating condition of turbopump.

고속카메라를 이용한 골프공 추적 (Tracking of Golf Ball Using High-speed Cameras)

  • 최서혁;김창대;김동우;류성필;안재형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.827-829
    • /
    • 2016
  • 본 논문에서는 골프 퍼팅연습 시 사용자의 편의를 도모하기 위해 고속카메라를 이용한 골프공 추적방법을 제안한다. 이것은 요즘 많은 사람들이 즐기는 레저스포츠 중 골프 퍼팅부분을 정확하게 칠 수 있도록 분석하기 위한 것이다. 제안방법은 일반 USB카메라를 사용할 경우 화소들이 뭉게져서 골프공 검출률이 낮으므로 최대 초당 380프레임까지 측정이 가능한 고속카메라를 사용하였다. 먼저 전처리 후 허프변환을 이용하여 골프공을 검출한다. 그 후 검출된 골프공의 정보를 이용하여 이동경로, 이동거리와 각도를 구한다. 제안한 방법을 적용한 결과 골프공의 검출률이 향상되었고 이동경로, 이동거리와 각도의 정확성도 향상되었다.

  • PDF

탄성 링을 갖는 볼 베어링 지지의 터보 펌프 임계 속도에 관한 연구 (Critical Speeds Evaluation of Turbo Pump Unit with a Elasticring Inserted Ball Bearing)

  • 이용복;김창호;곽현덕;하태웅;우유철
    • 한국유체기계학회 논문집
    • /
    • 제4권2호
    • /
    • pp.22-28
    • /
    • 2001
  • This study was performed to evaluate the dynamic behavior of turbo pump unit. The acceptable separate margin of $1^{st}$ critical speed was obtained by the use of elastic-ring inserted ball bearing, while the poor separate margin of $1^{\st}$ critical speed was appeared in the case without the elastic-ring. In addition, the results show that the stiffness and damping of plain seals give more separate margin of $2^{nd}$ critical speed. However the wear or the failure of seals could reduce the $2^{nd}$ critical speed near the operating speed.

  • PDF

크로스핏 파워 트레이닝이 TPI OnBaseU Power Test와 골프 수행력에 미치는 영향 (Effect of CrossFit Power Training on TPI OnBaseU Power Test and Golf Performance)

  • Chang Wook Kim
    • 한국운동역학회지
    • /
    • 제33권4호
    • /
    • pp.185-195
    • /
    • 2023
  • Objective: The purpose of this study is to improve TPI OnBaseU Power Test and golf performance by conducting CrossFit power training. Method: Three male golf players from University B participated in this study. They had 3 to 4 years of golf experience and participated in 8 weeks of CrossFit power training. Results: OnBaseU Power Test: There was a lot of improvement in Sit up throw (27.9%) and Chest pass (10.58%), but there was not much improvement in Baseline Toss (R5.9, L9.8%) and Vertical Jump (4.1%). Golf shot data: There was a very statistically significant difference in Club speed, Ball speed, and Total Length, which are related to speed, and there was no difference in Club path and Smash factor, which are related to accuracy and posture. Conclusion: CrossFit power training was effective in improving TPI OnBaseU Power Test and golf performance (Club speed, Ball speed, Total Length).

볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구 (Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings)

  • 문형욱;서정화;김태호
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.