• Title/Summary/Keyword: Ball control

Search Result 580, Processing Time 0.027 seconds

The development of conditioning monitor system for bearing (Bearing의 이상진단을 위한 모니터링 시스템 개발)

  • 오재응;전의식;김인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.445-450
    • /
    • 1989
  • In this study, a variety of method to diagnose a fault of rotatory machine is suggested. Apprehending the physical meaning of each techniques, computer simulation is performed. The result from this computer simulation and the signal of the faulted ball bearing is studied from all its aspect. It is found that this conditioning monitor system is effective.

  • PDF

Real-Time Control of Networked Control Systems via Ethernet

  • Ji Kun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.591-600
    • /
    • 2005
  • In this paper, we discuss real-time control of networked control systems (NCSs) and practical issues in the choice of the communication networks for this purpose. An appropriate integration of control systems, real-time environments, and network communication systems allows the optimization of the quality-of-control (QoC) in NCSs. We compare several prevailing network types that may be used in control applications to offer a guideline of choosing a proper network. A real-time operating environment is also presented as an important ingredient of NCS design. To evaluate its feasibility and effectiveness, a real-time NCS containing a ball magnetic levitation (Maglev) setup is implemented via an Ethernet. Based on the experimental results, it is concluded in this paper that real-time control via Ethernet is a practical and feasible solution to NCS design.

Evaluation of Numerical Model of a Ball Valve used for a Gas Pipeline (가스 파이프라인용 볼 밸브의 수치해석 모델 평가)

  • KIM, CHUL-KYU;LEE, KYOUNG-KEUN;LIM, TAE-GYUN;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.764-772
    • /
    • 2016
  • This paper presents on the evaluation of numerical analysis model of a ball valve used for a gas pipeline. The ball valve has important role to control the gas flow of the pipeline as well as safety operation to prevent gas explosion at the emergency. For the validation of numerical simulation, the computational domains are introduced three different types: a hexahedron chamber connected to a pipeline outlet without considering the geometry of pressure tubes, a pipeline only considered the geometry of pressure tubes, and a pipeline connected both of the a hexahedron chamber and pressure tubes. The commercial code, SC/Tetra, is introduced to solve the three-dimensional steady-state Reynolds-averaged Navier-Stokes analysis in the present study. The valve flow coefficient and valve loss coefficient with respect to the valve opening rate of 30%, 50%, and 70% are compared with experimental results. Throughout the numerical analysis for the three analysis domains, pressure computed along the pipeline is affected by computational domains. It is noted pressure obtained by the computational model considering both of the a hexahedron chamber and pressure tubes has a relatively good agreement to the experimental data.

Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process (2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

Cutting Force Control Using A Two Degree-of-Freedom Controller in Ball-end Milling Processes (CNC 볼엔드밀링 공정에서 2자유도 제어기를 이용한 절삭력 제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.219-224
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant fled speed. The second is a simultaneous control of feed and spindle speed. Those are confirmed to work properly. Especially the latter shows a faster response and we'll be evaluated to pare away workpiece by simultaneous control of position and cutting farce sooner or later.

  • PDF