• Title/Summary/Keyword: Balance Insole

Search Result 28, Processing Time 0.027 seconds

Effect of Space Fabric Type Air Insole Pressure difference on Balance to Normal Adults (공간직물형 에어 인솔의 공기압 차이가 젊은 성인의 균형 능력에 미치는 영향)

  • Kim, Gi-Chul;Lee, Jeon-Hyeong;Kim, Sang-Su;Nam, Hue-Hyeong
    • PNF and Movement
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Purpose: This study examined the effects of space fabric type air insole pressure differences on young adults' dynamic balance ability. Method: The subjects of this study were 17 young female adults without musculoskeletal system disease. Balance ability was measured by dividing the subjects into three groups: an experimental group which did not wear an air insole (insole-off group), an experimental group which wore an air insole to which air pressure of $0.55kg/cm^2$ was applied (insole-0.55 group), and an experimental group which wore an air insole to which air pressure of $0.75kg/cm^2$ was applied (insole-0.75 group). For dynamic balance, the subjects stood on a balance pad, and perimeter length and medium speed were measured three times. The averaged values were recorded and statistically processed. Result: There were significant differences in average speed, and the insole-0.75 group's average speed decreased compared to the insole-off group and the insole-0.55 group. Although the total movement distance did not statistically differ, the insole-75 group's movement distance decreased compared to the insole-off group and the insole-0.55 group. Conclusion: Application of a space fabric type air insole, in particular insole-0.75, was helpful in improving balance ability. This is considered to occur because the space fabric structure was conducive to decreasing sway and producing balance.

Custom-made Golf Insole Recommender System for Optimizing The Foot Balance During Golf Swing

  • Lee, Kyung-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose the method and development of custom-made golf insole recommender system to optimize the foot balance during golf swing. This system development procedures are as follows : (1) Using the measured data of the golf swing, the analysis of the individual golf hitting and balance will be done. (2) Based on the analysis results, the system will recommend the golf custom-made insole to optimize the individual balance using recommender algorithm. (3) After the golf custom-made insole is recommended, the modeling and design of the recommended insole is processed. Golf custom-made insole will be possible to reduce the excessive shaking and increase the lower-body supporting force. Therefore, we have expected that the recommended insole will improve the swing results through the optimization of golf swing balance. In the future, it is necessary to secure the higher validity and reliability through the more diverse experiments and research.

Investigation about anterior.posterior plantar pressure and right.left body balance by insole height (깔창의 높이에 따른 전후 압력 분포와 좌우 균형에 관한 연구)

  • Jo, Deok-Sang;Goh, Hyun-Gon;Cha, Seung-Yong;Kim, Mi-Ri;Hong, Bo-Ram;Seo, Ji-Hee;Jeon, Mi-Hee;Song, Mi-Ri;Lee, Hyo-Suk;Kim, Min-Jun;Kim, Hyoung-Su
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • Purpose : The purpose of this study was to investigate the effect of body balance according to insole height and to provide basic information about body balance by insole height. Method : We examed 40 university students who had healthy body without balance impairment. Plantar pressure was measured by EMED system and the measurement of MTD balance used the MTD-balance master in static stance posture. Both of equipments are various measurement method. We measured plantar pressure and MTD balance each three different height insole(0cm, 3cm, 7cm) and each trial was 30 second in duration. Result : The results were as follows : 1) It showed significantly differences between bare foot and height insole. The anterior plantar pressure with 3cm or 7cm insole were more higher than bare foot(P<.05). 2) There were no significantly differences between barefoot and height insole with MTD-balance master(P<.05). Conclusion : In conclusion, the measurement of MTD balance showed right and left balance ability didn't change by insole height, but plantar pressure was moved on anterior side of foot so we could know insole's height cause the effect to anterior and posterior balance ability.

  • PDF

The Effects of Lateral Wedged Insole to the Shoe of the Affected Side on Weight Bearing, Balance and Gait with Stroke (마비측에 적용한 외측 쐐기 깔창이 뇌졸증 환자의 체중부하율과 균형, 보행에 미치는 영향)

  • Kim, Hye-Lim;Shin, Won-Seob
    • PNF and Movement
    • /
    • v.11 no.2
    • /
    • pp.21-29
    • /
    • 2013
  • Purpose : The study was to evaluate the weight distribution, balance and gait function of stroke patients wearing lateral wedged insole to the shoe of the affected side. Methods : 27 patients with stroke (15 men, 12 women) participated in this study. Participants performed weight distribution, dynamic balance and gait ability with or without wedged insole on affected side in a random order. The balancia was used to evaluate the weight distribution. Deviation from the center line was analyzed by Dartfish during sit to stand to evaluate dynamic balance. The functional walk ability evaluated by 10 m walking velocity. Results : The asymmetry index of weight bearing improved significantly with wedged insole of affected side(p<.05). During sit to stand, center of gravity significantly moved from non-affected side to more mid line of body(p<.05). Improvement were shown in walking speed after wearing the wedged insole(p<.05). Conclusion : Wedged insole applied on affected side have a beneficial effect on weight distribution, dynamic balance and walking speed with stroke.

The Effect of Insole Height on Lumbosacral Angle and Body Function in Male University Students

  • Lee, Young Sin;Yu, Seong Hun;Kim, Seong Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2015
  • Objective: The aim of this study is to investigate the effect of insole height change in the lumbosacral angle and physical functions in healthy males. Background: In order to release male's dissatisfaction with his height and to increase satisfaction with his body, using insole is generalized. There have been researches on female's body change in accordance with function of insole and heel height, whereas there are few researches on males. Method: Participants were divided into three groups. A control group had 10 participants who wore 0cm insole. Experimental group I had 10 participants who wore 2cm insole. Experimental group II had 10 participants who wore 4cm insole. All participants wore insoles during their daily lives for a trial period of 8 weeks. The results were evaluated before and after comparison, and we measured lumbosacral angle, balance (dynamic balance, agility, quickness) and lumbar pain (LBP). Results: This study showed that insole height affected lumbosacral angle and dynamic balance and pain. In particular, there were significant differences in the 4cm group among the three groups (p<.05). The 2cm group did show a significant difference in lumbosacral angle and pain (p<.05). Furthermore, no significant difference was observed within the control group. Conclusion: The 4cm insole height suggests that the increase of lumbosacral angle contributes to some changes in LBP, balance, pain and physical functions, probably leading to negative effects on variety of activities of daily life. Application: The results of wearing insoles with proper height will help to prevent musculoskeletal disorders.

Effects of Heel-insole on Static Balance and Postural Strategy during External Perturbation in Healthy Young Men

  • Kang, Cheol-Jin;Oh, Duck-won;Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Purpose: This study examined the effects of heel insoles on the static balance and leg muscle activity and posture control strategy during external perturbation. Methods: Thirty healthy young men participated in the study. The subjects underwent two experimental conditions: 1) no heel insole condition (0cm) and 2) wearing heel insole condition (5cm). The static balance was measured using an I-Balance device, which measured the change in the center of gravity (COG). The onset time of muscle activation and muscle activation of the erector spinae (ES), hamstring (HAM), gastrocnemius (GCM) were measured using surface EMG electrodes to determine the change in posture control strategy during external perturbation. Results: The speed and distance of COG were significantly higher in the wearing heel insoles condition than the no heel insole condition (p<0.05). In addition, significant differences in the onset time of the GCM, HAM, and ES muscle activation were observed when there was no heel insole condition during external perturbation (p<0.017). On the other hand, no significant differences in the onset time of muscle activation were observed between GCM and HAM when wearing the heel insole condition during external perturbation (p<0.017). Moreover, muscle activation of the GCM was significantly higher in the wearing heel insoles condition than the no heel insole condition during external perturbation (p<0.05). Conclusion: These findings suggest that heel insoles may have disadvantages, and increased efforts are needed to maintain balance and change the posture control strategy during external perturbation.

The Effect of Insole to Flexible Flat Foot on Dynamic Balance and Ankle Muscle Activity during the Y-Balance Test

  • Lee, Sue Min;Son, Sung Min;Hwang, Yoon Tae;Park, Seol
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.5
    • /
    • pp.218-223
    • /
    • 2022
  • Purpose: This study sought to identify the effects of an insole applied for the flexible flat-foot condition on dynamic balance and ankle muscle activities during the Y-balance test (YBT). Methods: Thirteen flexible flat-footed adults and an equal number of normal-footed adults were enrolled. The dynamic balance of the subjects was measured using the YBT, which is a reach test. While they were reaching forward with their foot, the percentage maximum voluntary isometric contraction (MVIC) of the tibialis anterior, peroneus longus and medial and lateral gastrocnemius were measured and analyzed. The flat-footed group then applied the ready-made insoles and underwent the YBT again. A comparison of the distance and muscle activity was conducted using YBT, not only between the flat-footed and control group, but also between the flat-footed group before and after the application of the insole. Results: Between the groups, the anterior reach distance in the flat-footed group was significantly lower, but there were no significant differences observed in the posteromedial and posterolateral directions. With the insole, the reach distance of the flat-footed group was significantly increased in the anterior and posterolateral direction compared to the control group. With the insole, the lateral gastrocnemius activity significantly decreased compared to trials without the insole in the flat-footed group, but there were no significant differences in the other muscles. Conclusion: The insole for flat-footed subjects can maintain the medial arch of the foot, and it may help enhance functional and mechanical dynamic balance in people with flat feet.

Effects of Shoe Insole Height on Static and Dynamic Balance among Healthy Young Men (중창의 높이가 건강한 젊은 남성들의 정적 및 동적 균형에 미치는 영향)

  • Song, Geunchan;Park, Minji;Jo, Suyeon;Kim, Mirae;Jo, Eunjin;Kang, Soonhee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.3
    • /
    • pp.49-57
    • /
    • 2015
  • Purpose : The purpose of this study was to identify whether static and dynamic balance in young men were influenced by the different height of insoles in their shoes. Methods : Eighteen healthy young men (mean $20.61{\pm}1.38years$) were recruited for this study. The subjects' static and dynamic balance were assessed while wearing three different height' insoles (0cm, 2cm, 3cm) in their tennis shoes. Anterioposterior (AP) and mediolateral (ML) sway velocity was measured for 20 seconds using a force plate (Good balance system, Finland) under four conditions including normal standing with eyes open and with eyes closed, and tandem standing with eyes open and with eyes closed. The Functional Reach Test (FRT) and Timed Up & Go (TUG) were also performed for each subject under each condition. Results : 1) ML and AP sway velocities in young men were significantly different according to the height of the insole in normal standing with eyes open and eyes closed. 2) ML and AP sway velocities in young men were not different according to the height of the insole in tandem standing with eyes open. 3) ML sway velocities in young men were significantly different according to the height of the insole in tandem standing with eyes closed, whereas AP sway velocities did not differ by height of the insole in tandem standing with eyes closed. 4) FRT scores in young men were significantly different according to the height of the insole. 5) TUG scores in young men were not significantly different according to the height of the insole. Conclusions : This study's results indicate that the static and dynamic balance in young men can be influenced by shoe insole height.

Analysis Software based on Center of Pressure to Improve Body Balance using Smart Insole

  • Moon, Ho-Sang;Goo, Se-Jin;Byun, Sang-Kyu;Shin, Sung-Wook;Chung, Sung-Taek
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.202-208
    • /
    • 2020
  • Body balance necessary for ordinary daily activities can be undermined by diverse causes. In this study, as a way to control such a problem, we have produced smart insole as a wearable device in the form of insole and developed analysis software evaluating body balance, which measures ground reaction force applied to each area of sole and Center of Pressure (COP). The software visualized changes in COP positions while a user was moving and average COP positions, and it is also capable of measuring the COP values in the Anterior-Posterior (AP) and Medial-Lateral (ML) areas of feet. Through gait analysis, it can analyze the time of walking, strides, speed, COP trajectory while walking, etc. In addition, we have developed training contents for body balance improvement designed in consideration of Y-Balance Test and Timed Up and Go (TUG) Test. They were established in virtual reality similar to daily living environment so that people can expect more effective training results regardless of places.

Effect of Transverse and Longitudinal Arch Support of Individual Discount rate on the Balance Ability of the Body (개인별 인솔의 족궁 지지가 신체 균형능력에 미치는 영향)

  • Kim, Seon-Chil;Bae, Jin-Woo;Jang, Ji-Pil
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • The body to achieve an interaction that are connected to each other. Foot of which plays an important role in motor activity. Insole that has been recently used, have a dynamic functional elements. In particular, support of Arch plays a very important role in terms of a motor function of the human body as a whole. It is possible to predict the proper support Arch with insole, the overall structure of the body there can affect the balance. In this study, by applying the insole which supports the Longitudinal arch and Transverse arch, you are trying to assess the interaction of balance and the body's ability. To target the 20 there is no problem in the sense of balance, college student, and changes were observed by measuring the Center of Position area and distance through the Biorescue device worn before and after led by Arch support. As a result, I showed improved results significantly discount rate after wearing in the Center of Position area and distance to assess the balance ability. Therefore, the correction insole function is to support the Longitudinal arch and Transverse arch to an important role in the foot. It may be that it has a functional element for improving the balance of the function of preventing collapse of the arch during walking, to disperse the weight of the entire foot, us reduce fatigue in the end.

  • PDF