• Title/Summary/Keyword: Balance Capability

Search Result 164, Processing Time 0.023 seconds

Driving of Inverted Pendulum Robot Using Wheel Rolling Motion (바퀴구름운동을 고려한 역진자 로봇의 주행)

  • Lee, Jun-Ho;Park, Chi-Sung;Hwang, Jong-Myung;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

Blade Containment (엔진케이스의 블레이드 컨테인먼트)

  • Kim, Jee-Soo;Park, Ki-Hoon;Sung, Ok-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.414-417
    • /
    • 2011
  • On the basis of the paper described herein, rotor blade failure in the compressor, gas generator turbine, and power turbine and the resulting internal damage is contained within the peripheral hardware and engine casings. For the safety reason, the blade containment was regulated by aviation authority. For reducing the weight of the case, a heaviest single component of a jet engine, the blade containment capability was analyzed by engine manufacturer. The procedure established for containment design involves an energy balance method based on the comparison of the kinetic energy of released blade and the strain energy of the containment zone. The LS-DYNA simulation can also be introduced to predict behavior of released blade and case. All of the analytic and numerical result are described ${\ldots}$.

  • PDF

Effect of Lower Limb Muscle Activity on Balancing through Sprinter Patterns of PNF (PNF의 Sprinter Pattern을 통한 하지의 근 활성도가 균형능력에 미치는 영향)

  • Jeong, Woo-Sik;Jeong, Jae-Young;Kim, Chan-Kyu;Jung, Dae-In;Kim, Kyung-Yoon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.281-292
    • /
    • 2011
  • In this study, for examining an effect of lower limbs' muscle activity on balance capability when applying sprinter pattern among the PNF, the experiment was conducted as followed. Under the object of 24 people diagnosed by hemiplegia, they were divided into control group and experimental group and the experiment was conducted on the experimental group, three times per a week for six weeks. Experimental group received Sprinter pattern of combined PNF upper extremity and lower extremity pattern. For the lower limbs' muscle activity, effective values of Vastus medialis laterails, medial lateral hamstrings, lateral gastrocnemius' action potential were analyzed. The balance ability tests was conducted with FICSIT-4, FSST and MTD-Balance system. For the significance test of control group and experimental group for measuring time by exercise application method, two-way repeated measure ANOVA was conducted and for the significance test among the groups by each measuring time, independent t-test was conducted. Also, for examining the correlation among the measuring item, pearson correlation was used for the analysis. As the result, the application of sprinter pattern increased muscle activity of lower limbs in paretic side and improve static and dynamic balance ability effectively. Therefore, it will be necessary to develop new intervention by combining active application of the therapeutic intervention program for lower limbs' effective muscle mobilizing in paretic side with various exercising patterns.

The Capability Analysis of Water Supply for the Parallel Reservoir System by Allocation Rules (저수량 배분규칙을 적용한 병렬저수지 용수공급능력 해석)

  • Park, Ki-Bum;Jee, Hong-Kee;Lee, Soon-Tak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.215-224
    • /
    • 2007
  • The purpose of this study was to estimates water supply reliability indices of the water supply by Allocation Rules(AR) for parallel reservoirs. Rule (A) can be considered it as only current storage, Rule(B) can be considered it as current storage and inflow and Rule(C) can be considered it as current storage, inflow and water supply capacity. First, conditions of water supply are divided by Condition I for the monthly constant water supply and Condition II for the monthly varied water supply. Second, results of allocation coefficients are revealed the smallest different at Rule(C). The analysis of water supply showed that the capability of water supply is superior to the Rule(B), it is superior to the Rule(C) on the base of the balance of water supply. The reliability analysis was highly showed at the Rule(B) and Rule(C). A methodology for the analysis of water supply was developed and applied to the parallel reservoir system from this research, The operation rule for the parallel reservoir can be slightly modified and successfully applied to the different kinds of the parallel reservoir system.

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

A Review on the Mechanism of Human Postural Control (인간의 자세조절 메커니즘에 대한 연구)

  • Lee, Dong-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.45-61
    • /
    • 2005
  • Stance is defined as any state in which the total mass of the body is supported by the feet. In order to maintain stance, the sum of gravito-inertial forces acting on the body must be registered by equal and opposite forces at the region of contact between the organism and the support surface. Balance is controlled by applying forces to the surface of support so as to maintain the body's center of mass vertically above the feet. for a muIti-segment organism, there can be a variety of ways in which balance can be controlled, since movements of different body segments can have similar effects on the control of balance. In general, the organism tends to have a body configuration that is aligned with gravito-inertial force when there are no external forces acting on it. If any segments of the body are not aligned with gravito-inertial force vector, a torque on that segment would tend to move the body's center of mass. The maintenance of postural stability is accomplished in humans by a complex neural control system. This requires organizing integrating and acting upon visual, vestibular, and somatosensory input, providing orientation information to the postural control system. The information necessary to control and coordinate movement is provided by the visual sense of eye position with respect to the surrounding surface layout, the vestibular sense of head orientation in the gravito-inertial space, and the somatic sense of body segment position relative to one another and to the support surface. In this study, perception and action capability was examined from various points of view. The underlying assumption of the study was that the change of postural configuration could be effected by organism, environment and task goal.

Study on the Improvement of Postural Balance of the Elderly using Virtual Bicycle System (가상 자전거 시스템을 이용한 노인의 자세균형 증진에 관한 연구)

  • Kwon, Tea-Kyu;Yoon, Young-Il;Piao, Yong-Jun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.609-617
    • /
    • 2007
  • In this paper, a new rehabilitation training system was developed to improve equilibrium sense of the elderly by combining virtual reality technology with a fixed exercise bicycle. In order to evaluate the effectiveness of the training system, the elderly participated as test subject in the investigation of the influence of different the parameters on postural balance control. We measured three different running modes of virtual bicycle system with two successive sets. The parameters measured were running time, velocity, the weight movement, the degree of the deviation from the road, and the variables about the center of pressure. The repeated training, our results showed that the running capability of the elderly improve compared. In addition, it was found out that the ability of postural control and the equilibrium sense was improved with the presentation of the visual feedback information of the distribution of weight. From the results of this experiment, we showed that our newly developed system might be useful in the diagnosis of equilibrium sense or in the improvement of the sense of sight and, somatic, and vestibular sense of the elderly in the field of rehabilitation training.

Enhancing Corporate Capability through Changes in Shift System (교대근무제의 변화를 통한 기업역량 강화)

  • Lee, Yeongho;Lee, Jeong Eon
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.385-392
    • /
    • 2014
  • Workshift is a method of organization of working time in which workers succeed one another at the workplace. The shift work system enables round-the-clock activities required for meeting technological needs and productive and economic demands. This study tries to find the practical implications by investigating the workshift systems which are successfully applied in two representative Korean companies, Yuhan-Kimberly and POSCO. Case study method is applied in oder to analyze the special feature of shift work systems in two companies. It is concluded that the shift system(2-4system) has positively enhanced firm's capability including workers' satisfaction and commitment, product quality, and productivity. Specifically, the shiftwork system applied in the companies has significantly influenced on the workers' work-life balance.

Characteristics of sediment transportation and sediment budget in Nakdong River under weir operations (보 운영에 따른 낙동강 유사이송특성 및 유사수지 분석)

  • Son, Kwang Ik;Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.587-595
    • /
    • 2017
  • Hydraulic characteristics affecting sediment transport capacity due to the weir operations were investigated and developed sediment rating curves for four gaging stations (Nakdong, Gumi, Waegwan, and Jindong) in Nakdong River. Analysis found that the sediment transportaion capability had been decreased and it could be proved from the field measurement records in 2013. Applicabilities of nine sediment transport prediction techniques, which are imbeded in GUIDE program, were examined and adopted for the four gaging stations. Analysis of sediment balance for Nakdong River, including 9 major tributaries, had been carried out with pseudo 2-D numerical model and found that: 1) sedimentation phenomena will be prevailed along the Nakdong River. 2) Engelund-Hansen technique shows the least error in estimation of sediment balance. 3) Engelund-Hansen technique most appropriately describes the sediment characteristics for four gaging stations. 4) Estimated error from the sediment balance for Nakdong River was smaller than the error caused by the estimation of sediment incomming from 9 tributries. Therefore, it is necessary to improve the accuracy of predicting the sediment incomming from the tributaties for better sediment balance analysis.

Development of Elderly Walking Independence Index Model (고령자 보행자립도(능력) 측정모형 개발)

  • ROH, Chang-Gyun;PARK, Bum Jin;MOON, Byungsup
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.348-356
    • /
    • 2015
  • In 2026, in ten years from now, Korea is expected to enter into a super aged society. By facing this social phenomenon, analyzing the elderlies and preparing measures are needed among society. In the transportation field, the traffic accidents which are related to the elderly pedestrians have drastically increased so that R&D projects and policy supplementations are introduced. However very few base studies on which focused on the behavior, capability, impact factors analysis of for elderly pedestrians are conducted. To determine the walking capability, this study divided the walking capability into 3 three categories - general, health and exercise. It carries out the comprehensive survey targeting 52 elderlies with the average age of 72.6 years and this survey is made up of total 12 factors in the 3 three categories. This survey also is conducted with various measuring devices and methods such as interview, National Fitness Award, SPBB, Cybex and the like for. From the 12 detailed factors, the general factors such as age, physical shape and so forth have little impact on the walking speed. However the factors that have the greatest impact on the walking speed are extensor muscle on lower limbs in the health factors and balance, coordination, and SPPB in the exercise factors. With these results, this study develops the independent walking model which can measure the walking capability of the elderly people. The developed model is expected to be utilized as the base study for elderly's walking patterns in the transportation field by examining the walking capability of the older people.