• Title/Summary/Keyword: Baking temperature

Search Result 160, Processing Time 0.032 seconds

Development of Optimum Rutin Extraction Process from Fagopyrum tataricum (쓴 메밀에서의 루틴 추출 최적 공정 개발)

  • Yoon, Seong-Jun;Cho, Nam-Ji;Na, Seog-Hwan;Kim, Young-Ho;Kim, Young-Mo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.5
    • /
    • pp.573-577
    • /
    • 2006
  • The rutin content of Fagopyrum tataricum is 100-fold higher than that of Fagopyrum esculentum. For the development of a rutin-containing beverage, a suitable method to extract rutin from buckwheat (Fagopyrum tataricum) with high rutin yield was investigated. A roasting temperature range of $310/240^{\circ}C$ (Ed-confirm that this is indeed a range; otherwise perhaps, 'Roasting temperatures ranging from 310 to $240^{\circ}C$ were considered$\ldots$') was considered to be the best as the basic color reference. Rutin content varied according to the roasting time and heating temperature; i.e., it decreased with increasing roasting time and temperature. (Ed- this sentence is unnecessarily complicated and should be simplified to 'Rutin content decreased with increasing roasting time and heating temperature.') The optimal extraction temperature and processing time were obtained as $80^{\circ}C$ and 10 minutes to maximize the rutin concentration in the extract.

  • PDF

Neural Network Modeling for Bread Baking Process (제빵 굽기 공정의 신경회로망 모형화)

  • Kim, Seung-Chan;Cho, Seong-In;Chun, Jae-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.525-531
    • /
    • 1995
  • Three quality factors of bread during baking process were measured to develop neural network models for bread baking process. Firstly, volume and browning changes during bread baking process were measured using image processing technique and temperature changes inside the bread during process were measured by K-type thermocouples. Relationships among them showed nonlinearity. Secondly, multilayer perception structure with error back propagation learning was used to construct neural network models. Three neural network models for volume, browning, and bread temperature were developed respectively. Developed models showed good performance with predictive error of 4.62% for volume and browning changes after 30 seconds, 7.38% for volume and browning changes after 2 minutes, and 1.09% for temperature change inside the bread respectively.

  • PDF

Forming Condition for Automotive Body Outer Panel using Aluminum Alloy Sheet for Improved Dent Resistance (차체 외판 부품의 덴트 특성 향상을 위한 알루미늄 판재의 성형조건에 관한 연구)

  • Ko, S.J.;Kim, T.J.;Kim, I.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.420-426
    • /
    • 2011
  • Dent resistance is determined by both shape characteristics, i.e., local radius of curvature and sheet thickness, and material properties such as yield strength. This work presents results of a study on the effect of work hardening and bake hardening on dent resistance of aluminum alloy sheet parts by considering the forming condition and baking temperature.

Quality Characteristics of Yackwa Baked and Dipping with Goami Powder (굽기와 집청 조건에 따른 고아미 구운 약과의 품질 특성에 미치는 영향)

  • Kim, Hyun-Ah;Lee, Kyung-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.5
    • /
    • pp.604-612
    • /
    • 2012
  • The quality characteristics of yackwa made with goami powder at different baking temperatures (150, 160, 170, 180) and baking times (15, 20, 25 min) and at different dipping temperatures (65 and $80^{\circ}C$) and dipping times (15 and 30 min) were evaluated. To determine the optimal temperature and time for yackwa containing goami powder, color values, preference color and pictures were determind. The baking temperatures were $150^{\circ}C$ for 25 min, $160^{\circ}C$ for 15 min and 20 min, and $170^{\circ}C$ for 15 min. The weight of yackwa was heavier at low dipping temperatures and long dipping times. L-values and b-values were the highest at short dipping times. Hardness, moisture and overall preference was the lowest at low dipping temperatures and long dipping times.

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Evaluation of Microbiological Hazards of Baking Utensils and Environment of Bakeries (일부 베이커리업체의 조리용기.기구 및 작업환경에 대한 미생물적 위해분석)

  • 김은미;김현숙
    • Culinary science and hospitality research
    • /
    • v.7 no.3
    • /
    • pp.85-98
    • /
    • 2001
  • This study was performed to describe the overall sanitation of baking utensils and equipments, employees, and environment in 9 bakeries. Microbiological tests on employees, utensils and equipments, were done according to standard procedure and included total plate count, coliforms, fungi and Staphylococcus aureus.. Microbiological testing is a value in determining hazards for developing a HACCP plan but were not detected throat and employee's hands before use. Staphylococcus aureus was detected nasal cavity and employees's hands after use. Employee's apron after use was detected fungi and coliform and was risk factor of cross-contamination to bread or cookies et al. Generally hygienic conditions of pan, kitchen board, knife, brush, and wooden scoop were worse than those of other baking utensils such as tray, bread tweezers, dusting brush and dish cloth. And refrigerator, freezer and fermentation chamber were detected fungi and coliforms. Total plate count of heating table, working table, distribution table, washbowl and refrigerator was increased in 2nd period. Temperature of refrigerator was 10.43$^{\circ}C$ and strict temperature control of refrigerations needs. Therefore, baking utensils and equipments were reguraly need to sterilize and clean. Additionary, it need to practice the effective sanitation education and training program for the bakery managers and employees.

  • PDF

Statistical Modeling of Pretilt Angle Control on the Homogeneous Polyimide Surface as a Function of Rubbing Strength and Baking Temperature

  • Kang Hee-Jin;Lee Jung-Hwan;Hwang Jeoung-Yeon;Yun Il-Gu;Seo Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, the response surface modeling of the control of the pretilt angle in the nematic liquid crystal on the homogeneous polyimide surface with different surface treatment is investigated. The pretilt angle is one of the main factors to determine the alignment of the liquid crystal display. The pretilt angle is measured to analyze the variation of the characteristics on the various process conditions. The rubbing strength and the hard baking temperature are considered as input factors. After the design of experiments is performed, the process model is then explored using the response surface methodology. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

Effects of Thawing-Fermentation Condition of Frozen Dough on frozen Bread Quality (냉동생지의 해동.발효조건이 냉동 빵의 품질에 미치는 영향)

  • 김교창;장성규;도대홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.3
    • /
    • pp.287-294
    • /
    • 1997
  • When bread making, the condition of thawing-fermentation for frozen dough were tested in variable temperature, and measured thawing-fermentation time and volume of frozen dough. L-Ascorbic acid (L-Aa) was added in frozen dough for the comparison test of develop volume in bread staling degree of baking bread were measured additive frozen dough which was stoppages in freezing, staling degrees were tested hardness with Rheometer. The test for comparison of thawing-fermentation time in variable temperature was shown the condition of dough conditioner at 3$0^{\circ}C$ was most effective for bread making, Because That condition was required very short time(74 min) But, in this comparison of volume in final products was shown the products in the condition of thawing-fermentation at 3$0^{\circ}C$ was smaller than the products at 5$^{\circ}C$(418 ml). The baking volume of L-Aa additive frozen dough which has under gone thawing-fermentation at 3$0^{\circ}C$, were shown baking volume of 420 ml in 2 weeks storage terms to 100 mg/kg L-Aa additive dough and shown baking volume of 454 ml in 4 weeks storage terms to dough of 200 mg/kg additive weight. Staling degrees of L-Aa additive frozen bread were measured with Rheometer. The hardness of 100 mg/kg L-Aa additive frozen bread was sown low level hardness in 1~2 weeks freezing term, 150 mg/kg L-Aa additive frozen bread was shown low level hardness in 3 weeks freezing term. In 4 weeks freezing term, 200 mg/kg L-Aa additive frozen bread was shown low level hardness compared with non-additive L-Aa frozen bread. In comparison of frozen bread quality, non-additive L-Aa products was better than additive L-Aa products in equality of baking shape and external apparence. But in total quality in external and internal apparence, additive L-Aa products was better than non-additive L-Aa products.

  • PDF

A Hight Tilted OCB(HTOCB) Mode using Control of Tilt Angle for Hematic Liquid Crystal on Polyimide Surface (폴리이미드 표면에서의 네마틱 액정의 틸트 제어를 이용한 High Tilted OCB(HTOCB) 모드)

  • Hwang, Jeoung-Yeon;Jeong, Youn-Hak;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.635-640
    • /
    • 2005
  • In this paper, we have improved a novel high tilted optically compensated bend (OCB) (HTOCB) mode by using high tilt angle that was generated by the unique baking condition on the homeotropic alignment layer. The high tilt angle of liquid crystal (LC) was generated by new alignment process that tilt angle changed homeotropic state to homeogenous state using Hot-plate equipment; we obtained about $40\~50^{\circ}$ tilt angle with negative and positive dielectric anisotropy on the homeotropic polyimide (PI), and then LC tilt angle decreased as increasing baking temperature and time. At last, we obtained about $10^{\circ}$ with positive type NLC $({\Delta}n>0)$. Also, the LC tilt angle of positive type NLC $({\Delta}n>0)$ decreased as increasing rubbing strength at the same baking temperature and time. The novel LC operating mode (HTOCB) that used the high tilt angle by the new alignment method was improved. The response time of the novel HTOCB cell was faster than that of conventional OCB cell. We suggest that the developed the novel HTOCB cell using control of tilt angle on the homeotropic surface is a promising technique for the achievement of a fast response time and a high contrast ratio.