• 제목/요약/키워드: Bainitic ferrite

검색결과 46건 처리시간 0.026초

구상흑연주철의 Bainite변태과정에서 Bainitic Ferrite의 형상변화 (Morphological Variation of Bainitic Ferrite in Transformation Process of Austempered Ductile Iron)

  • 최답천
    • 한국주조공학회지
    • /
    • 제12권5호
    • /
    • pp.403-411
    • /
    • 1992
  • The growth characteristics of bainite at early stage in the fast quenched spheroidal graphite cast irons containing 0.06%Mn and 0.45%Mn during austempering process, was investigated with optical and scanning electron microscope. The following results regarding the effects of Mn and isothermal heat treatment on the morphological variation of bainitic ferrite were obtained. The morphology of bainite varies from acicular below 350$^{\circ}C$ to feather shape above 350$^{\circ}C$. The period of isothermal treatment also affects the shape of bainite at the fixed temperature. At 350$^{\circ}C$, bainite is bamboo leaf-like up to 200 secs of isothermal holding time and with further increasing time up to 300 secs, changes to a mixed structure consisting of both feather and bamboo leaf and, finally becomes all feather shape at 900 secs. The morphology of bainitic ferrite formed at early stage of 300$^{\circ}C$ isothermal treatment is similar to that of bainitic ferrite formed at 250$^{\circ}C$ or 350$^{\circ}C$ with unbranched, linear ferrite. However, bainitic ferrite divides into branches with increasing isothermal treatment, which occurs more fast at 400$^{\circ}C$ than at 350$^{\circ}C$. The difference in adding amount of Mn influences the morphology of bainitic ferrite in upper bainite. The bainitic ferrite with 0.45%Mn is observed to be more stable than that with 0.06%Mn, remaining unbranched for a longer period at the same temperature.

  • PDF

저탄소.저합금 강의 베이나이트 미세 구조 연구 (Study on the bainitic microstructure in low carbon HSLA steels)

  • 강주석;안성수;유장용;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.154-157
    • /
    • 2007
  • The austenite phase observed in low carbon HSLA steels is well known to be decomposed to various bainitic microstructures, such as granular bainite, acicular ferrite and bainitic ferrite during continuous cooling process. These bainitic microstructures have been usually identified by using either scanning electron microscope (SEM) or transmission electron microscope (TEM). However, SEM and TEM images do no exactly coincide, because of the quite different sample preparation method in SEM and TEM observations. These conventional analysis method is, thus, not suitable for characterization of the complex bainitic microstructure. In this study, focused ion beam (FIB) technique was applied to make site-specific TEM specimens and to identify the 3-dimensional grain morphologies of the bainitic microstructure. The morphological feature and grain boundary characteristics of each bainitic microstructure were exactly identified.

  • PDF

저탄소 HSLA강의 천이 온도 미치는 미세 조직의 영향 (Effects of microstructure on impact transition temperature of low carbon HSLA steels)

  • 강주석;이창우;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.431-434
    • /
    • 2008
  • Effects of microstructure on the toughness of low carbon HSLA steels were investigated. Nickel decreased the ferrite-austenite transformation temperature, resulted in increase of the fraction of bainitic ferrite. However, it was decreased with increasing deformation amount at austenite region. Since fine austenite grains formed by dynamic recrystallization under large strain transformed to acicular ferrite or granular bainite rather than bainitic ferrite. The effective grain size, thus, was decreased by deformation and it resulted in lower ductile-brittle transition temperature (DBTT). The bainitic ferrite was thought to inhibit the fracture crack initiation and to delay the crack propagation by its high dislocation density and hard interlath $2^{nd}$ phase constituents, respectively. Thus, DBTT was also decreased by Ni addition in low carbon HSLA steels.

  • PDF

극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향 (Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels)

  • 정우창
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

베이나이트계 고강도강의 합금원소와 냉각조건이 미세조직, 인장성질, 충격성질에 미치는 영향 (Effects of Alloying Elements and the Cooling Condition on the Microstructure, Tensile Properties, and Charpy Impact Properties of High-Strength Bainitic Steels)

  • 성효경;신상용;황병철;이창길;김낙준;이성학
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.798-806
    • /
    • 2010
  • The effects of alloying elements and the cooling condition on the microstructure, tensile properties, and Charpy impact properties of high-strength bainitic steel plates fabricated by a controlled rolling process were investigated in the present study. Eight kinds of steel plates were fabricated by varying C, Cr, and Nb additions under two different cooling rates, and their microstructures and tensile and Charpy impact properties were evaluated. The microstructures present in the steels increased in the order of granular bainite, acicular ferrite, bainitic ferrite, and martensite as the carbon equivalent or cooling rate increased, which resulted in a decrease in the ductility and Charpy absorbed energy. The steels containing a considerable amount of bainitic ferrite or martensite showed very high strengths, together with good ductility and Charpy absorbed energy. In order to achieve the best combination of strength, ductility, and Charpy absorbed energy, granular bainite and acicular ferrite were properly included in the high-strength bainitic steels by controlling the carbon equivalent and cooling rate, while about 50 vol.% of bainitic ferrite or martensite was maintained to maintain the high strength.

베이나이트강의 미세조직과 저온 충격 인성에 미치는 바나듐과 보론의 영향 (Effect of Vanadium and Boron on Microstructure and Low Temperature Impact Toughness of Bainitic Steels)

  • 황원구;이훈;조성규;서준석;권용재;이정구;신상용
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.139-149
    • /
    • 2021
  • In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.

등온 열처리에 따른 중탄소 베이나이트강의 미세조직과 기계적 특성 (Effect of Isothermal Heat Treatment on the Microstructure and Mechanical Properties of Medium-Carbon Bainitic Steels)

  • 이지민;이상인;임현석;황병철
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.522-527
    • /
    • 2018
  • This study investigates the effects of isothermal holding temperature and time on the microstructure, hardness and Charpy impact properties of medium-carbon bainitic steel specimens. Medium-carbon steel specimens with different bainitic microstructures are fabricated by varying the isothermal conditions and their microstructures are characterized using OM, SEM and EBSD analysis. Hardness and Charpy impact tests are also performed to examine the correlation of microstructure and mechanical properties. The microstructural analysis results reveal that granular bainite, bainitic ferrite, lath martensite and retained austenite form differently in the specimens. The volume fraction of granular bainite and bainitic ferrite increases as the isothermal holding temperature increases, which decreases the hardness of specimens isothermally heat-treated at $300^{\circ}C$ or higher. The specimens isothermally heat-treated at $250^{\circ}C$ exhibit the highest hardness due to the formation of lath martensite, irrespective of isothermal holding time. The Charpy impact test results indicate that increasing isothermal holding time improves the impact toughness because of the increase in volume fraction of granular bainite and bainitic ferrite, which have a relatively soft microstructure compared to lath martensite for specimens isothermally heat-treated at $250^{\circ}C$ and $300^{\circ}C$.

압력용기용 A516 강의 미세조직에 미치는 탄소 당량과 냉각 속도의 영향 (Effect of Carbon Equivalent and Cooling Rate on Microstructure in A516 Steels for Pressure Vessel)

  • 이현욱;강의구;김민수;신상용
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.511-518
    • /
    • 2019
  • In this study, the effect of carbon equivalent and cooling rate on microstructure and hardness of A516 steels for pressure vessel is investigated. Six kinds of specimens are fabricated by varying carbon equivalent and cooling rate, and their microstructures and hardness levels are analyzed. Specimens with low carbon equivalent consist of ferrite and pearlite. As the cooling rate increases, the size of pearlite decreases slightly. The specimens with high carbon equivalent and rapid cooling rates of 10 and $20^{\circ}C/s$ consist of not only ferrite and pearlite but also bainite structure, such as granular bainite, acicular ferrite, and bainite ferrite. As the cooling rate increases, the volume fractions of bainite structure increase and the effective grain size decreases. The effective grain sizes of granular bainite, acicular ferrite, and bainitic ferrite are ~20, ~5, and ${\sim}10{{\mu}m$, respectively. In the specimens with bainite structure, the volume fractions of acicular ferrite and bainitic ferrite, with small effective grains, increase as cooling rate increases, and so the hardness increases significantly.

변태유기소성강의 소성변형에 미치는 2차상의 형상과 고용탄소의 영향 (Effects of the Morphology of Secondary Phases and Carbon Content on the Plastic Deformation of TRIP steel)

  • 홍승갑
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.116-119
    • /
    • 1999
  • The effects of secondary phase morphology and carbon content on the plastic deformation of 0.2C-1.5Si-1.5mn TRIP(TRansformed Induced Plasticity) steel have been investigated at various annealing and bainitic transformation temperatures. The morphology of ferrite and secondary phases was controlled by the annealing temperature and the distribution of secondary phase was controlled by the bainitic transformation temperature. The secondary phase contributed to elongation and/or UTS depending on the ferrite morphology which determined deformation mode simple elongation or rotation of secondary phase along the tensile direction In case of the sample containing the granular type retained austenite the elongation was improved as carbon stabilized the austenite phase. If the film-shape retained austenite in acicular ferrite was dominant however UTS was enhanced as the transformed martensite was hardened by carbon.

  • PDF

API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향 (Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels)

  • 이승완;임인혁;황병철
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.