• Title/Summary/Keyword: Bainite transformation

Search Result 50, Processing Time 0.023 seconds

Effect of the Cu Composition Ratio on the Phase Transformation in Low Ni Austenite Cast Iron, Fe-3%C-16%(Ni+Mn+Cu) (Fe-3%C-16%(Ni+Mn+Cu) 주철에서 상변태에 미치는 Cu 조성비의 영향)

  • Park, Gi-Deok;Heo, Hoe-Jun;Na, He-Sung;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.419-425
    • /
    • 2012
  • The purpose of this research was to develop a low Ni austenitic cast iron through replacing Ni by Cu and Mn because they are cheaper than Ni. The effect of the Cu content (6-12 wt%) on the microstructure characteristics was investigated in Fe-3%C-16%(Ni+Cu+Mn) cast iron. Contrary to general effect of the Cu on cast iron, the result of the microstructure analysis indicated that bainite and cementite were formed in high Cu content (>8 wt%Cu). A crystallized Cu-solution (Cu-Mn) phase and MnS in the Cu-solution were formed. The quantity of those phases increased as the Cu content increased. Consequently, the high Cu content in the composition ratio (Ni+Cu+Mn=16%) caused the formation of Cu-Mn/MnS and those phases decreased the effect of Cu and Mn on austenite formation. For this reason, bainite and cementite were formed in high Cu content.

Corrosion Behavior of Fe-Ni Bainitic Steel Through an Inverted Austempering Multi-Step Process for Weathering Steel Applications

  • Miftakhur Rohmah;Gusti Umindya Nur Tajalla;Gilang Ramadhan;Yunita Triana;Efendi Mabruri
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • A Fe-Ni Bainitic steel as a weathering steel application was developed by combining its excellent mechanical properties and corrosion resistance in maritime environments. Nickel concentration (0.4-3 wt%) and inverted austempering multi-step (IAM) process were primary determinants of the microstructure of the Fe-Ni Bainitic steel. The initial austempering steel was performed at 300 ℃ for 600 seconds to obtain a partly bainitic transformation. The steel was heated again for 1800 s at 450 ℃. The microstructure was comprised of ferrite, a blocky martensite/austenite island, and a homogeneous lath-shape bainite structure with widths ranging from 4.67 to 6.89 ㎛. The maximum strength, 1480 MPa, was obtained with 3 wt% nickel. In this study, corrosion behavior was investigated utilizing potentiodynamic and electrochemical impedance spectroscopy (EIS) tests. A higher nickel content in Fe-Ni Bainitic steel refined the grain size, improved the bainite fraction, lowered the corrosion rate to 0.0257 mmpy, and increased the charge transfer of film resistance to 1369 Ω.

Microstructural evolution of ultrafine grained TRIP low-carbon steel (초미세 결정립 TRIP 강의 미세조직 변화)

  • Lee, C.W.;Ko, Y.G.;NamGung, S.;Shin, D.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.263-266
    • /
    • 2009
  • Transformation induced plasticity (TRIP) steel consisting of ferrite, austenite, and bainite phases was regarded as an excellent candidate for automotive applications due to the good combination of ductility and strength. The aim of the present study was to understand the microstructural characteristics of ultrafine grained (UFG) TRIP low-carbon steel fabricated via equal channel angular pressing accompanied with intercritical- and isothermal-annealing treatments. When compared to coarse grained counterpart, only the volume fraction of austenite phase in UFG TRIP steel remained unchanged, but all other microstructural variables such as size and morphology were different. It was found that UFG TRIP steel showed the homogeneous distribution of each constituent phase, which was discussed in terms of annealing treatments done in this study.

  • PDF

Microstructures and Tensile Properties by Multi-step Isothermal Heat Treatment in Conventional TRIP Steel (상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성)

  • Kim, Kyeong-Won;Lee, Chang-Hoon;Kang, Jun-Yun;Lee, Tae-Ho;Cho, Kyung-Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2016
  • In recent years, TRIP steels which are composed of ferrite, bainite, and retained austenite have drawn much attention for automotive sheets due to excellent combination of strength and ductility. The effect of two-step isothermal heat treatment of bainitic transformation on microstructures, especially retained austenites and tensile properties in the conventional TRIP steel was investigated. A two-step isothermal heat treatment, in which 50% bainitic transformation occurred at high temperature, followed by bainitic transformation at low temperature, improves tensile properties, resulting from enhanced mechanical stability of retained austenite against external plastic deformation due to refinement of retained austenites, compared to single-step isothermal heat treatment.

The Effect of Second Stage Heat Treatment on Mechanical Properties of TRIP aided Triple Phase Steel (TRIP형 복합조직강판의 기계적 성질에 미치는 2단 열처리 영향)

  • Lee, Y.S.;Kim, Y.S.;Yoon, J.K.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.216-226
    • /
    • 1998
  • Heat treatment conditions and the formation of microstructures were studied for improving the transformation-induced plasticity(TRIP) effect of retained austenite and mechanical properties of Fe-0.2%C-1.5%Si-1.5%Mn sheet steel. An excellent combination of elongation about 30% and high strength over 760MPa was achieved by processing of intercritical annealing and isothermal holding Intercritical annealing the sheet steel produced fine particles($1{\sim}2{\mu}m$) of retained austenite which were stabilized due to C enrichment by subsequent holding in bainite transformation range. Heat treatment conditions were depended on the shape and distribution of second phases as well as the volume fraction and stability of retained austenrte. In this work, the heat treatment condition of optimal strength-elongation balance was obtained by holding the steel at $400^{\circ}C$ for 200sec, after intercritical annealing at $790^{\circ}C$ for 300sec.

  • PDF

Effect of Quenchant Temperature on the Surface Residual Stress in Gas Carburized AISI 8620 Steel (가스침탄 처리한 AISI 8620 강에서 급냉제가 표면잔류응력에 미치는 영향)

  • Jang, C.G.;Hahn, J.H.;Hwang, N.M.;Kim, J.J.;Lim, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.27-32
    • /
    • 1989
  • The effect of quenchant temperature on the surface residual stress was studied for AISI 8620 steel. Specimens were carburized at $900^{\circ}C$ in all case type furnace using a gas-base atmosphere of methanol cracked and liquefied petroleum gas, and then subjected to single reheat quenchant in oil or salt bath in the temperature range of $60^{\circ}C$ to $300^{\circ}C$. After carburizing and reheat Quenching, residual stress was measured by the hole drilling method. Experimental results showed that the surface residual stress was increased as the quenchant temperature was raised. This is in contrast to the fact that the formation of phase of low transformation strain such as bainite results in lower surface compressive stress. The greater compressive stress observed in specimens Quenched at higher temperature may be attributed to the shifting of the transformation start point farther from the surface, as was reported in other carburizing steels.

  • PDF

A Study on Corrosive Wear Characteristics and the Mechanism of Austempered Low-Alloy Ductile Iron (오스템퍼링 한 저합금구상흑연주철의 부식마멸특성 및 그 기구에 관한 연구)

  • 박흥식;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1404-1411
    • /
    • 1993
  • This study was undertaken to investigate the corrosive wear charateristics upon various transformation condition of austempered low-alloy ductile cast iron in corrosive environments against mating specimen made of the hardened SM45C. The corrosive wear test was carried out by rubbing the annular surface of two test pieces in distilled water and aqueous solution at constant sliding speed of 0.5m/s. In severe wear region, the corrosive wear rate Wc increased hastily with NaCl concentration owing to intermetallic adhesion but Wc went down slowly in mild wear region due to lubricating effect of the corrosion product. The critical sliding distance decreased with increasing NaCl concentration due to increased generation rate of the corrosion product and the specific corrosive wear rate has maximum in 1% NaCl aqueous solution at mild wear region. With the variation of matrix, the corrosive wear resistance of the fine acicular bainite was higher than that of coarse upper bainite because of reducing the local cell reaction by carbides. A growth in volume fraction of retained austenite in matrix increased the Wc due to soften surface, but has a declining tendency of Wc in mild wear region.

Heat Treatment Analysis on Low-Alloy Steel (저합금강 소재의 열처리해석 기술개발)

  • Choi Y. S.;Kwak S. Y.;Choi J. K.;Kim J. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.215-223
    • /
    • 2005
  • A numerical analysis program is developed by FDM scheme for the prediction of microstructural transformation during heat treatment of steels. In this study, multi-phase model was used fur description of diffusional austenite transformations in low-alloy hypoeutectoid steels during cooling after austenitization. A fundamental property of the model consisting of coupled differential equations is that by taking into account the rate of austenite grain growth, it permits the prediction of the progress of ferrite, pearlite, and bainite transformations simultaneously during quenching and estimate the amount of martensite also by using K-M eq. In order to simulate the microstructural evolution during tempering process, another Avrami-type eq. was adopted and method for vickers hardness prediction was also proposed. To verify the developed program, the calculated results are compared with experimental ones of casting product. Based on these results, newly designed heat treatment process is proposed and it was proved to be effective for industry.

Effects of Manganese and Carbon on the HAZ Microstructural Evolution in Titanium Oxide Steel (티타늄 산화물강 열영향부 조직변태에 미치는 망간 및 탄소의 영향)

  • 방국수
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.78-84
    • /
    • 2004
  • Effects of manganese and carbon on the HAZ microstructural evolution in 500㎫ grade titanium oxide steels were investigated. Microstructural evolution primarily depends on supercooling. When cooled at 3$^{\circ}C$/s in 0.15%C-1.5%Mn steel, grain boundary and Widmanst tten ferrite formed at 640 and 62$0^{\circ}C$, respectively, followed by competitive formation of acicular ferrite and upper bainite inside of grain at 58$0^{\circ}C$. With an increase of manganese, degree of supercooling increased while critical cooling rate for the formation of gain boundary ferrite decreased. Consequently, the amount of acicular ferrite in HAZ was decreased in 2.0%Mn after initial increase in 1.0 and 1.5%Mn. Therefore, optimum supercooling should be maintained to accelerate acicular ferrite formation in titanium oxide steels. Low carbon steel, 0.11%C-1.5%Mn, showed larger amount of acicular ferrite than higher carbon steel because of effectiveness of diffusionless transformation in low carbon steel.

Effects of microstructure on impact transition temperature of low carbon HSLA steels (저탄소 HSLA강의 천이 온도 미치는 미세 조직의 영향)

  • Kang, J.S.;Lee, C.W.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.431-434
    • /
    • 2008
  • Effects of microstructure on the toughness of low carbon HSLA steels were investigated. Nickel decreased the ferrite-austenite transformation temperature, resulted in increase of the fraction of bainitic ferrite. However, it was decreased with increasing deformation amount at austenite region. Since fine austenite grains formed by dynamic recrystallization under large strain transformed to acicular ferrite or granular bainite rather than bainitic ferrite. The effective grain size, thus, was decreased by deformation and it resulted in lower ductile-brittle transition temperature (DBTT). The bainitic ferrite was thought to inhibit the fracture crack initiation and to delay the crack propagation by its high dislocation density and hard interlath $2^{nd}$ phase constituents, respectively. Thus, DBTT was also decreased by Ni addition in low carbon HSLA steels.

  • PDF