DOI QR코드

DOI QR Code

Corrosion Behavior of Fe-Ni Bainitic Steel Through an Inverted Austempering Multi-Step Process for Weathering Steel Applications

  • Miftakhur Rohmah (Research Center for Metallurgy, National Research and Innovation Agency (BRIN)) ;
  • Gusti Umindya Nur Tajalla (Department of Materials and Metallurgical Engineering, Institut Teknologi Kalimantan) ;
  • Gilang Ramadhan (Department of Materials and Metallurgical Engineering, Institut Teknologi Kalimantan) ;
  • Yunita Triana (Department of Materials and Metallurgical Engineering, Institut Teknologi Kalimantan) ;
  • Efendi Mabruri (Research Center for Metallurgy, National Research and Innovation Agency (BRIN))
  • 투고 : 2023.02.07
  • 심사 : 2023.06.07
  • 발행 : 2024.02.29

초록

A Fe-Ni Bainitic steel as a weathering steel application was developed by combining its excellent mechanical properties and corrosion resistance in maritime environments. Nickel concentration (0.4-3 wt%) and inverted austempering multi-step (IAM) process were primary determinants of the microstructure of the Fe-Ni Bainitic steel. The initial austempering steel was performed at 300 ℃ for 600 seconds to obtain a partly bainitic transformation. The steel was heated again for 1800 s at 450 ℃. The microstructure was comprised of ferrite, a blocky martensite/austenite island, and a homogeneous lath-shape bainite structure with widths ranging from 4.67 to 6.89 ㎛. The maximum strength, 1480 MPa, was obtained with 3 wt% nickel. In this study, corrosion behavior was investigated utilizing potentiodynamic and electrochemical impedance spectroscopy (EIS) tests. A higher nickel content in Fe-Ni Bainitic steel refined the grain size, improved the bainite fraction, lowered the corrosion rate to 0.0257 mmpy, and increased the charge transfer of film resistance to 1369 Ω.

키워드

과제정보

All authors thank to Research Center for Metallurgy - BRIN for Funding supports and laboratory facilities

참고문헌

  1. P. Lambert, Sustainability of metals and alloys in construction, in Sustainability of Construction Materials, 2nd ed., pp. 105 - 128, Elsevier Ltd (2016).
  2. J. Jia, Z. Liu, X. Cheng, C. Du, and X. Li, Development and optimization of Ni-advanced weathering steel: A review, Corrosion Communication, 2, 82 (2021). Doi: https://doi.org/10.1016/j.corcom.2021.09.003
  3. W. Wu, X. Cheng, J. Zhao, and X. Li, Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives, Corrosion Science, 165, 108416 (2020). Doi: https://doi.org/10.1016/j.corsci.2019.108416
  4. X. Cheng, Z. Jin, M. Liu, and X. Li, Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres, Corrosion Science, 115, 135 (2017). Doi: https://doi.org/10.1016/j.corsci.2016.11.016
  5. M. Morcillo, I. Diaz, H. Cano, B. Chico, and D. de la Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts, Construction and Building Materials, 213, 723 (2019). Doi: https://doi.org/10.1016/j.conbuildmat.2019.03.334
  6. J. Cheng, J. Qing, Y. Guo, and H. Shen, High-strength weathering steels obtained using bainite matrix and nanoscale co-precipitation, Materials Letters, 236, 307 (2019). Doi: https://doi.org/10.1016/j.matlet.2018.10.076
  7. T. Zhang, W. Liu, L. Chen, B. Dong, W. Yang, Y. Fan, Y. Zhao, On how the corrosion behavior and the functions of Cu, Ni and Mo of the weathering steel in environments with different NaCl concentrations, Corrosion Science, 192, 109851 (2021). Doi: https://doi.org/10.1016/j.corsci.2021.109851
  8. Neetu, P. K. Katiyar, S. Sangal, and K. Mondal, Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels, Corrosion Science, 178, 109043 (2021). Doi: https://doi.org/10.1016/j.corsci.2020.109043
  9. X. M. Xiao, Y. Peng, C. Y. Ma, and Z. L. Tian, Effects of Alloy Element and Microstructure on Corrosion Resistant Property of Deposited Metals of Weathering Steel, Journal of Iron and Steel Research International, 23, 171 (2016). Doi: https://doi.org/10.1016/S1006-706X(16)30030-9
  10. ASTM A588/A588M-01, Standard Specification for High-Strength Low-Alloy Structural Steel with 50 ksi [345 MPa] Minimum Yield Point to 4 in. [100 mm] Thick1, ASTM International (2001).
  11. H. Mousalou, S. Yazdani, B. Avishan, N. P. Ahmadi, A. Chabok, and Y. Pei, Microstructural and mechanical properties of low-carbon ultra-fine bainitic steel produced by multi-step austempering process, Materials Science and Engineering: A, 734, 329 (2018). Doi: https://doi.org/10.1016/j.msea.2018.08.008
  12. G. Gao, H. Guo, X. Gui, Z. Tan, and B. Bai, Inverted multi-step bainitic austempering process routes: Enhanced strength and ductility, Materials Science and Engineering: A, 736, 298 (2018). Doi: https://doi.org/10.1016/j.msea.2018.08.091
  13. Z. Yao, G. Xu, H. Hu, Q. Yuan, J. Tian, and M. Zhou, Effect of Ni and Cr Addition on Transformation and Properties of Low-Carbon Bainitic Steels, Transcations of the Indian Institute of Metals, 72, 1167 (2019). Doi: https://doi.org/10.1007/s12666-019-01590-7
  14. B. Adamczyk-Cieslak, M. Koralnik, R. Kuziak, K. Majchrowicz, T. Zygmunt, and J. Mizera, The Impact of Retained Austenite on the Mechanical Properties of Bainitic and Dual Phase Steels, Journal of Materials Engineering and Performance, 31, 4419 (2022). Doi: https://doi.org/10.1007/s11665-021-06547-w
  15. H. Y. Dong, C. Y. Hu, G. H. Wu, K. M. Wu, and R. D. K. Misra, A Effect of nickel on hardening behavior and mechanical properties of nanostructured bainite-austenite steels, Materials Sciences and Engineering: A, 817, 141410 (2021). Doi: https://doi.org/10.1016/j.msea.2021.141410
  16. J. Tian, G. Xu, Z. Jiang, H. Hu, and M. Zhou, Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel, Metals and Materials International, 24, 1202 (2018). Doi: https://doi.org/10.1007/s12540-018-0139-y
  17. S. Chen, J. Hu, L. Shan, C. Wang, X. Zhao, and W. Xu, Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels, Materials Science and Enginnering: A, 803, 140706 (2021). Doi: https://doi.org/10.1016/j.msea.2020.140706
  18. F. Citrawati, R. Dwiwandono, and L. Firmansyah, The effect of Ni on the formation of bainite in Fe-Ni lateritic steels through semi-continuous cooling method, International Journal of Technology, 11, 60 (2020). Doi: https://doi.org/10.14716/ijtech.v11i1.3178
  19. M. Arribas, T. Gutierrez, E. D. Molino, A. Arlazarov, I. D. D.-C., D. Martin, D. D. Caro, S. Ayenampudi, and M. J. Santofimia, Austenite reverse transformation in a Q&P route of Mn and Ni added steels, Metals, 10, 862 (2020). Doi: https://doi.org/10.3390/met10070862
  20. A. P. Moon, K. Chandra Sekhar, S. Mahanty, S. Sangal, and K. Mondal, Corrosion Behavior of Newly Developed High-Strength Bainitic Railway Wheel Steels, Journal of Materials Engineering and Performance, 29, 3443 (2020). Doi: https://doi.org/10.1007/s11665-020-04846-2
  21. T. Rojhirunsakool, T. Thublaor, M. H. S. Bidabadi, S. Chandra-Ambhorn, Z. Yang, and G. Gao, Corrosion Behavior of Multiphase Bainitic Rail Steels, Metals, 12, 694 (2022). Doi: https://doi.org/10.3390/met12040694
  22. A. Yilmaz, X. Li, S. Pletincx, T. Hauffman, J. Sietsma, and Y. Gonzalez-Garcia, Passive Film Properties of Martensitic Steels in Alkaline Environment: Influence of the Prior Austenite Grain Size, Metals , 12, 292 (2022). Doi: https://doi.org/10.3390/met12020292
  23. Neetu, P. K. Katiyar, S. Sangal, and K. Mondal, Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels, Corrosion Science, 178, 109043 (2021). Doi: https://doi.org/10.1016/j.corsci.2020.109043
  24. C. Thee, L. Hao, J. H. Dong, X. Mu, and W. Ke, Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel, Acta Metallurgica Sinica (English Letters), 28, 261 (2015). Doi: https://doi.org/10.1007/s40195-014-0193-5