• 제목/요약/키워드: Bainite transformation

검색결과 50건 처리시간 0.024초

B과 Cu가 포함된 고강도 저합금강의 연속냉각 변태와 미세조직 및 기계적 특성 (Continuous Cooling Transformation, Microstructure and Mechanical Properties of High-Strength Low-Alloy Steels Containing B and Cu)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.525-530
    • /
    • 2013
  • This study investigated the continuous cooling transformation, microstructure, and mechanical properties of highstrength low-alloy steels containing B and Cu. Continuous cooling transformation diagrams under non-deformed and deformed conditions were constructed by means of dilatometry, metallographic methods, and hardness data. Based on the continuous cooling transformation behaviors, six kinds of steel specimens with different B and Cu contents were fabricated by a thermomechanical control process comprising controlled rolling and accelerated cooling. Then, tensile and Charpy impact tests were conducted to examine the correlation of the microstructure with mechanical properties. Deformation in the austenite region promoted the formation of quasi-polygonal ferrite and granular bainite with a significant increase in transformation start temperatures. The mechanical test results indicate that the B-added steel specimens had higher strength and lower upper-shelf energy than the B-free steel specimens without deterioration in low-temperature toughness because their microstructures were mostly composed of lower bainite and lath martensite with a small amount of degenerate upper bainite. On the other hand, the increase of Cu content from 0.5 wt.% to 1.5 wt.% noticeably increased yield and tensile strengths by 100 MPa without loss of ductility, which may be attributed to the enhanced solid solution hardening and precipitation hardening resulting from veryfine Cu precipitates formed during accelerated cooling.

오스템퍼링한 低合金 球狀黑鉛鑄鐵의 機械的 性質에 관한 硏究 (A study on the mechanical properties of austempered low-alloy ductile cast iron)

  • 강명순;박흥식
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1296-1302
    • /
    • 1988
  • The study has been carried out under various experimental conditions to investigate mechanical properties by the transformation conditions of austempered low-alloy ductile cast iron. The amount of retained austenite and bainite after quenching was determined by the X-ray diffractometer and the point counting method and which the microstructure was investigated by the S.E.M. The mechanical properties of austempered low-alloy ductile cast iron can be varried over a comparatively wide range by changing the transformation conditions. During isothermal transformation of austenite in the bainite region, low-alloy ductile cast iron austempered at holding time of 40 minute has the maximum volume fraction(24%) of retained austenite in the cast iron matrix and which optimum values of mechanical properties correspond to the maximum amount of retained austenite, which falls with decreasing transformation temperature. The low values of both tensile strength and elongation in the initial stage of bainite transformation can be explained by premature fracture of tensile specimens and the tensile strength, hardness and elongation do not change considerably after a certain period. With a decreasing transformation temperature the tensile strength increase while the elongation decrease, especially the elongation has the maximum value at temperature $370^{\circ}C$.

A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy

  • Na, Seon-Hyeong;Seol, Jae-Bok;Jafari, Majid;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • 제47권1호
    • /
    • pp.43-49
    • /
    • 2017
  • A new method was introduced to distinguish the ferrite, bainite and martensite in transformation induced plasticity (TRIP) steel by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD is a very powerful microstructure analysis technique at the length scales ranging from tens of nanometers to millimeters. However, iron BCC phases such as ferrite, bainite and martensite cannot be easily distinguished by EBSD due to their similar surface morphology and crystallographic structure. Among the various EBSD-based methodology, image quality (IQ) values, which present the perfection of a crystal lattice, was used to distinguish the iron BCC phases. IQ values are very useful tools to discern the iron BCC phases because of their different density of crystal defect and lattice distortion. However, there are still remaining problems that make the separation of bainite and martensite difficult. For instance, these phases have very similar IQ values in many cases, especially in deformed region; therefore, even though the IQ value was used, it has been difficult to distinguish the bainite and martensite. For more precise separation of bainite and martensite, IQ threshold values were determined by a correlative TEM analysis. By determining the threshold values, iron BCC phases were successfully separated.

용접 열영향부 미세조직 및 재질 예측 모델링: V. 저합금강의 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델 (Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: V. Prediction Model for the Phase Transformation Considering the Influence of Prior Austenite Grain Size and Cooling Rate in Weld HAZ of Low Alloyed Steel)

  • 김상훈;문준오;이윤기;정홍철;이창희
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.104-113
    • /
    • 2010
  • In this study, to predict the microstructure in weld HAZ of low alloyed steel, prediction model for the phase transformation considering the influence of prior austenite grain size and cooling rate was developed. For this study, six low alloyed steels were designed and the effect of alloying elements was also investigated. In order to develop the prediction model for ferrite transformation, isothermal ferrite transformation behaviors were analyzed by dilatometer system and 'Avrami equation' which was modified to consider the effect of prior austenite grain size. After that, model for ferrite phase transformation during continuous cooling was proposed based on the isothermal ferrite transformation model through applying the 'Additivity rule'. Also, start temperatures of ferrite transformation were predicted by $A_{r3}$ considering the cooling rate. CCT diagram was calculated through this model, these results were in good agreement with the experimental results. After ferrite transformation, bainite transformation was predicted using Esaka model which corresponded most closely to the experimental results among various models. The start temperatures of bainite transformation were determined using K. J. Lee model. Phase fraction of martensite was obtained according to phase fractions of ferrite and bainite.

저탄소 직접 소입강의 베이나이트상 조절에 관한 연구 (A Study on the Bainite Phase Control of Direct-Quenched Low Carbon Steels)

  • 안병규;고영상;이경섭
    • 한국재료학회지
    • /
    • 제6권8호
    • /
    • pp.841-851
    • /
    • 1996
  • 최근의 연구에 의하면 직접 소입강에서 미량의 베이나이트상의 생성이 확인되었다. 마르텐사이트 변태전에 생성된 베이나이트상은 마르텐사이트의 패킷을 미세화시키고 입도 미세화로 기계적 성질을 향상시킨다고 한다. 본 연구에서는 미량 합금 원소로 Mo, B 등을 첨가한 강을 $1200^{\circ}C$에서 단조하여 물에 직접 소입한 후, 베이나이트상의 분율을 조절하기 위해 베이나이트 변태 온도에서 일정시간 유지하는 열처리 과정을 거쳐 생성된 베이나이트상의 분율과 기계적 성질간의 관계를 고찰하였다. 이로써 마르텐사이트와 베이나이트 혼합 조직의 강도와 인성을 증가시키는 효과적인 베이나이트 분율을 조사한 후에, 직접 소입시에 이와 같은 분율의 베이나이트 함량으로 조절할 수 있는 방법을 제시하여 고강도 고인성형 직접 소입강의 개발에 활용하고자 한다.

  • PDF

비조질강의 경도 자기제어에 미치는 합금원소의 영향 (Effect of Alloying Elements on Hardness Self-Control of Non-Heat-Treatable Steels)

  • 조기섭;권훈
    • 열처리공학회지
    • /
    • 제30권2호
    • /
    • pp.67-73
    • /
    • 2017
  • Transformation behavior and hardness change were studied in five kinds of self-control steels; standard, high V, modified Ni, W, and high C-Ni steels. In the cooling rates of $10-100^{\circ}C/min$, the primary ferrite and bainite were formed, and the amount of the former increased with decreasing cooling rate. The bainite transformation temperature, Bs, was measured as 570, 560, 590, 575, and $565^{\circ}C$ in experimental steels, respectively, which was similar to the calculated temperature. The self-control, that is, the consistency in hardness, was observed, in which the hardness increased with the decrease in Bs. In the case of hot compression testing, the lower temperature deformation led to the enhancement in hardness.

Mo계 고속도 공구강의 오스템퍼렁에 따른 기계적 성질에 관한 연구 (Study on the Mechanical Properties of Mo Series High Speed Tool Steel Austempered)

  • 최문성;이해우;노용식;김영희;김한군;이상윤
    • 열처리공학회지
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 1991
  • This study has been performed to find out the effect of austenitizing temperature, austempering temperature and its holding time, and tempering cycle on the mechanical properties such as impact resistance, hardness etc. of AISI $M_2$ Mo series high speed tool steel austempered or tempered after austempering treatment. The results obtained from the experiment are as follows ; (1) Optical micrograph has revealed that the transformation rate of bainite is delayed as the austenitizing temperature increases and that bainite is most apparently transformed at an austempering temperature of $290^{\circ}C$. (2) The amount of retained austenite during austempering has been analysed to be increased by the X-ray diffraction technique as the transformation product of bainite is increased. It has also been shown that the longer the holding time of austempering, the more the transformation quantity of bainite is formed, exhibiting, however, that the rate of bainitic transformation is considerably retarded after a certain period of holding time elapses. (3) Hardness measurement has shown that hardness values obtained after austempering increase with decreasing the amount of retained austenite. (4) The austempering and then tempering cycle has been formed to give hardness values which are more greatly improved as austenitizing temperature is increased. (5) The mechanical property of the specimen primary-tempered for 1 hour at $550^{\circ}C$ after austempering for 2 hours at $290^{\circ}C$ from the austenitizing temperature range of $1180^{\circ}C$ to $1210^{\circ}C$ have been estimated to be good values.

  • PDF

높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

재결정제어압연용 저탄소강의 연속냉각 상변태거동에 미치는 Nb 첨가효과 (Effect of Nb Addition on Phase Transformation Behavior during Continuous Cooling in Low Carbon Steels for Recrystallization Control Rolling)

  • 이상우;주웅용
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.346-354
    • /
    • 2000
  • Effect of Nb addition on the phase transformation behavior was studied through continuous cooling transformation tests after reheating(reheating CCT) and deforming(deforming CCT) the 0.07%C-1.3%Mn-0.015%Ti-(0~0.08)% Nb steels. Transformation temperatures for deforming CCT were lower than those for reheating CCT, and the critical cooling rate for bainite transformation during deforming CCT was lower than that during reheating CCT. These enhanced hardenability for deforming CCT was considered to come from the sufficient solid solution of Nb in austenite during high temperature reheating before deformation. With Nb addition, the phase transformation temperature decreased, the bainite formation was enhanced, and the hardness of steel increased. Furthermore, these phenomena were more remarkable for deforming CCT than for reheating CCT. From the results, Nb-Ti bearing low carbon steel was considered to be a very favorable alloy system with good strength/toughness balance by recrystallization control rolling process.

  • PDF

구상흑연주철의 Bainite변태과정에서 Bainitic Ferrite의 형상변화 (Morphological Variation of Bainitic Ferrite in Transformation Process of Austempered Ductile Iron)

  • 최답천
    • 한국주조공학회지
    • /
    • 제12권5호
    • /
    • pp.403-411
    • /
    • 1992
  • The growth characteristics of bainite at early stage in the fast quenched spheroidal graphite cast irons containing 0.06%Mn and 0.45%Mn during austempering process, was investigated with optical and scanning electron microscope. The following results regarding the effects of Mn and isothermal heat treatment on the morphological variation of bainitic ferrite were obtained. The morphology of bainite varies from acicular below 350$^{\circ}C$ to feather shape above 350$^{\circ}C$. The period of isothermal treatment also affects the shape of bainite at the fixed temperature. At 350$^{\circ}C$, bainite is bamboo leaf-like up to 200 secs of isothermal holding time and with further increasing time up to 300 secs, changes to a mixed structure consisting of both feather and bamboo leaf and, finally becomes all feather shape at 900 secs. The morphology of bainitic ferrite formed at early stage of 300$^{\circ}C$ isothermal treatment is similar to that of bainitic ferrite formed at 250$^{\circ}C$ or 350$^{\circ}C$ with unbranched, linear ferrite. However, bainitic ferrite divides into branches with increasing isothermal treatment, which occurs more fast at 400$^{\circ}C$ than at 350$^{\circ}C$. The difference in adding amount of Mn influences the morphology of bainitic ferrite in upper bainite. The bainitic ferrite with 0.45%Mn is observed to be more stable than that with 0.06%Mn, remaining unbranched for a longer period at the same temperature.

  • PDF