• Title/Summary/Keyword: Bagging and Boosting

Search Result 53, Processing Time 0.021 seconds

Ensemble Classification Method for Efficient Medical Diagnostic (효율적인 의료진단을 위한 앙상블 분류 기법)

  • Jung, Yong-Gyu;Heo, Go-Eun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.97-102
    • /
    • 2010
  • The purpose of medical data mining for efficient algorithms and techniques throughout the various diseases is to increase the reliability of estimates to classify. Previous studies, an algorithm based on a single model, and even the existence of the model to better predict the classification accuracy of multi-model ensemble-based research techniques are being applied. In this paper, the higher the medical data to predict the reliability of the existing scope of the ensemble technique applied to the I-ENSEMBLE offers. Data for the diagnosis of hypothyroidism is the result of applying the experimental technique, a representative ensemble Bagging, Boosting, Stacking technique significantly improved accuracy compared to all existing, respectively. In addition, compared to traditional single-model techniques and ensemble techniques Multi modeling when applied to represent the effects were more pronounced.

Classification for Imbalanced Breast Cancer Dataset Using Resampling Methods

  • Hana Babiker, Nassar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.

A Study for Improving the Performance of Data Mining Using Ensemble Techniques (앙상블기법을 이용한 다양한 데이터마이닝 성능향상 연구)

  • Jung, Yon-Hae;Eo, Soo-Heang;Moon, Ho-Seok;Cho, Hyung-Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.561-574
    • /
    • 2010
  • We studied the performance of 8 data mining algorithms including decision trees, logistic regression, LDA, QDA, Neral network, and SVM and their combinations of 2 ensemble techniques, bagging and boosting. In this study, we utilized 13 data sets with binary responses. Sensitivity, Specificity and missclassificate error were used as criteria for comparison.

Generalization Abilities of Ensemble Learning Algorithms : OLA, Bagging, Boosting (앙상블 학습알고리즘의 일반화 성능 비교)

  • Shin, Hyun-Jung;Jang, Min;Cho, Sung-Zoon;Lee, Bong-Ki;Lim, Yong-Up
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.226-228
    • /
    • 2000
  • 최근 제안된 관찰학습(OLA: Observational Learning Algorithm)은 committee를 구성하는 각각의 학습 모델들이 다른 학습 모델들을 관찰함으로써 얻어진 가상데이터를 실제 데이터와 결합시켜 학습에 이용하는 방법이다. 본 논문에서는, UCI 데이터 셋의 분류(classification)와 예측(regression)문제에 대하여 다층 퍼셉트론을 학습 모델로 설정하고, 이에 대하여 OLA와 bagging, boosting의 성능을 비교, 분석하였다.

  • PDF

Virtual Samples Generation Based on the Distriburion of Input Data (입력 데이터의 분포를 고려한 가상 샘플 생성)

  • 이봉기;임용업;조성준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.302-304
    • /
    • 2000
  • 본 논문에서는 잡음 추가와 네트웍 앙상블을 이용하는 기법으로 최근에 제안된 가상 샘플 생성 방법(VSG:Virtual Sample Generation)을 개선하는 방법을 제안하고, 이를 대표적인 앙상블학습 알고리즘인 Bagging, Boosting과 비교한다. 기존의 가상 샘플 생성 방법에 기초하여 입력 데이터의 분포를 고려하여 가상 샘플을 생성하는 방법을 제안한다. 이 방법은 입력 분포의 밀도가 높은 곳에서 가장 샘플로 인한 과소 적합을 방지하고 밀도가 낮은 곳에서 가상 샘플로 인한 과도 적합을 방지하기 위한 것이다. 본 논문은 입력 데이터의 밀도를 추정하는 새로운 과정을 정리하고 입력 분포에 따라 적합한 가상 샘플을 생성하는 방법을 고안했다. 그리고 제안하는 방법의 일반화 성능 향상을 보이기 위해 여러 가지의 합성 데이터를 사용하여 실험을 하였고 이를 Bagging, Boosting, VSG의 성능과 비교하였다.

  • PDF

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Ensemble Design of Machine Learning Technigues: Experimental Verification by Prediction of Drifter Trajectory (앙상블을 이용한 기계학습 기법의 설계: 뜰개 이동경로 예측을 통한 실험적 검증)

  • Lee, Chan-Jae;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.57-67
    • /
    • 2018
  • The ensemble is a unified approach used for getting better performance by using multiple algorithms in machine learning. In this paper, we introduce boosting and bagging, which have been widely used in ensemble techniques, and design a method using support vector regression, radial basis function network, Gaussian process, and multilayer perceptron. In addition, our experiment was performed by adding a recurrent neural network and MOHID numerical model. The drifter data used for our experimental verification consist of 683 observations in seven regions. The performance of our ensemble technique is verified by comparison with four algorithms each. As verification, mean absolute error was adapted. The presented methods are based on ensemble models using bagging, boosting, and machine learning. The error rate was calculated by assigning the equal weight value and different weight value to each unit model in ensemble. The ensemble model using machine learning showed 61.7% improvement compared to the average of four machine learning technique.

Ensemble Learning of Region Based Classifiers (지역 기반 분류기의 앙상블 학습)

  • Choi, Sung-Ha;Lee, Byung-Woo;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.303-310
    • /
    • 2007
  • In machine learning, the ensemble classifier that is a set of classifiers have been introduced for higher accuracy than individual classifiers. We propose a new ensemble learning method that employs a set of region based classifiers. To show the performance of the proposed method. we compared its performance with that of bagging and boosting, which ard existing ensemble methods. Since the distribution of data can be different in different regions in the feature space, we split the data and generate classifiers based on each region and apply a weighted voting among the classifiers. We used 11 data sets from the UCI Machine Learning Repository to compare the performance of our new ensemble method with that of individual classifiers as well as existing ensemble methods such as bagging and boosting. As a result, we found that our method produced improved performance, particularly when the base learner is Naive Bayes or SVM.

Indoor positioning method using WiFi signal based on XGboost (XGboost 기반의 WiFi 신호를 이용한 실내 측위 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Kim, Dae-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2022
  • Accurately measuring location is necessary to provide a variety of services. The data for indoor positioning measures the RSSI values from the WiFi device through an application of a smartphone. The measured data becomes the raw data of machine learning. The feature data is the measured RSSI value, and the label is the name of the space for the measured position. For this purpose, the machine learning technique is to study a technique that predicts the exact location only with the WiFi signal by applying an efficient technique to classification. Ensemble is a technique for obtaining more accurate predictions through various models than one model, including backing and boosting. Among them, Boosting is a technique for adjusting the weight of a model through a modeling result based on sampled data, and there are various algorithms. This study uses Xgboost among the above techniques and evaluates performance with other ensemble techniques.

Ensemble learning of Regional Experts (지역 전문가의 앙상블 학습)

  • Lee, Byung-Woo;Yang, Ji-Hoon;Kim, Seon-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.135-139
    • /
    • 2009
  • We present a new ensemble learning method that employs the set of region experts, each of which learns to handle a subset of the training data. We split the training data and generate experts for different regions in the feature space. When classifying a data, we apply a weighted voting among the experts that include the data in their region. We used ten datasets to compare the performance of our new ensemble method with that of single classifiers as well as other ensemble methods such as Bagging and Adaboost. We used SMO, Naive Bayes and C4.5 as base learning algorithms. As a result, we found that the performance of our method is comparable to that of Adaboost and Bagging when the base learner is C4.5. In the remaining cases, our method outperformed the benchmark methods.