• Title/Summary/Keyword: Baffle

Search Result 495, Processing Time 0.031 seconds

Numerical analysis of flow and settling efficiency in a sedimentation basin (수치모의를 통한 침사지에서의 흐름 및 침사효율 해석)

  • Kim, Dae-Guen;Kim, Sung-Man;Park, Won-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.713-722
    • /
    • 2010
  • This paper has assessed the flow patterns and settling efficiency in the sedimentation basin using the particle tracking method of the CFD code and has reached the following conclusions: In the original design where no baffle is installed in the sedimentation basin, a large recirculating area where the flow stagnates is created in the right side of the sedimentation basin, with most of the particles moving to the left side of the sedimentation basin following the flow. This biased flow structure in the sedimentation basin reduces the residence time of particles and thereby undermines settling efficiency. The biased flow toward the left side of the sedimentation basin is alleviated by installing a baffle in the sedimentation basin, promptly reducing the fast flow of over 0.7 m/s in the inlet of the sedimentation basin to the rate below 0.2 m/s. In this paper's simulation conditions, if a one-sided baffle is to be installed in the sedimentation basin, placing it 15 meters away from the basin's inlet leads to the best settling efficiency; it has also been analyzed that installing a two-sided baffle-rather than a one-sided one-is a better option in terms of settling efficiency. The highest settling efficiency of 96.2% is achieved when the underwater length of the two-sided baffle is set at 8 meters.

Experimental Study of the In-Water Radiation Impedance of the Finite Baffle Cylinder Radiator (유한 배플 원통 진동체의 수중 방사 임피던스에 대한 실험적 연구)

  • Kim, Won-Ho;Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 1994
  • In this paper, the measured in-water radiation impedance of cylindrical piezoelectric radiator with finite baffle is compared to the existing theoretical result of that with infinite baffle and the effect of baffle on the radiation impedance is examined. Comparision between measurement and theoretical result of radiation impedance shows that the measured radiation impedance tends to be that of the infinite baffle as the baffle length increases. Another finding of the comparision in that the effect of baffle is more dominant in radiation reactance than in radiation resistance. Therefore, for the use of theoretical radiation impedance of infinite baffle on the design of acoustic transducer, the impedance compensation to the baffle length should conducted.

  • PDF

Optimization of influent and effluent baffle configuration of a rectangular secondary clarifier using CFD and PIV test (CFD와 PIV test를 통한 장방형 2차침전지 유입 및 유출배플 형상 최적화)

  • Choi, Young-Gyun;Bae, Kang-Hyung;Yoon, Jong-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • The influent and effluent baffle configurations seriously affect the hydraulic characteristics of the secondary clarifier in wastewater treatment plant. In this study, those baffle configurations were optimized by computational fluid dynamics(CFD) analysis and particle image velocity(PIV) test in order to obtain uniform flow in inlet region and to minimize upflow velocity in outlet region of the secondary clarifier. Theoretical analysis using CFD showed that more uniform flow could be accomplished when the influent baffle was located closely to the inlet opening. Effects of effluent baffle configuration on the upflow velocity in the outlet region of the secondary clarifier were analyzed with four types of effluent baffles which are widely adopted for secondary clarifier design. From the CFD analysis, McKinney baffle(EB-2) was estimated to be the most effective for restraining the upflow velocity in the outlet region and these trends were identified by PIV tests. In addition, the McKinney baffle showed the most uniform overflow velocity distribution around the weir.

Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle (배플을 갖는 원통형 유체저장 탱크의 연성진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

A Numerical Study on the Heat Transfer Performance of Single-Tube Annular Baffle System (단관 환형배플 시스템의 전열성능에 대한 수치해석)

  • Hong, Jeong-Ah;Jun, Yong-Du;Lee, Kum-Bae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.8
    • /
    • pp.621-626
    • /
    • 2012
  • A new baffle configuration, an annular baffles, are considered in the present study as an alternative to reduce the excessive pressure drop associated with the conventional segmental ones in typical operating conditions. The heat transfer and pressure drops are numerically simulated for a single tube shell-and-tube model and compared against the conventional-baffle cases. Baffle blockage ratio and number of baffles are considered as the major variables for the present study specifying a fixed baffle spacing. It is found that the heat transfer increases 1.4~2.2 times without significant pressure loss compared to the bare tube cases and the goodness factor increases 1.35 times compared to the conventional-baffle model.

Heat Transfer and Friction Behaviour in a Channel with an Inclined Perforated Baffle

  • Krishna Putra, Ary Bachtiar;Ahn, Soo-Whan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.70-76
    • /
    • 2008
  • The effects of the inclined perforated baffles on the distributions of the local heat transfer coefficients and friction factors for air flows in a rectangular channel were determined for Reynolds numbers from 23,000 to 57,000. Four different types of the baffle are used. The inclined baffles have the width of 19.8cm, the square diamond type hole having one side length of 2.55cm, and the inclination angle of $5^{\circ}$, whereas the corresponding channel width-to-height ratio was 4.95. Results show that the heat transfer and friction factor depend significantly on the number of baffle holes and Reynolds number. The friction factor decreases with increasing Reynolds number and the number of holes on the baffle, and the heat transfer performance of baffle type II (3 hole baffle) has the best value.

A study of number of baffle on shell and tube heat exchanger (원통다관형 열교환기의 가로막 개수에 관한 연구)

  • 김순영;이육형;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.635-638
    • /
    • 2000
  • The propose of study analyze a TEMA(Tubular Exchanger Manufacturers Association) E shell and tube heat exchanger performance with 3, 5, 7, 9, 11 baffles and 16, 20 tubes. In this investigate measured a variation of the heat exchanger cooling capacity change within each number of baffle and tube number and determined optimal number of baffle. designs for industry applications are optimized using the analysis of test results.

  • PDF

Effect of baffle parameters on heat transfer in shell-and-tube heat exchangers (원통다관형 열교환기에서 배플인자가 열전달에 미치는 영향)

  • Lee, Sang-Cheon;Jo, Yeong-U;Nam, Sang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.185-194
    • /
    • 1997
  • An experimental study has been performed on the effect of baffle parameters on shell -side heat transfer in a conventional shell-and-tube heat exchanger. The baffle spacing distance and the number of baffle were varied to investigate the behavior of unequal baffle spacing correction factor which is appeared in the Bell Delaware method for prediction of the shell-side heat transfer coefficient. It was obvious that heat duties obtained from the experiment significantly deviated from those calculated by the conventional Bell-Delaware method. A new correlation of the unequal baffle spacing correction factor was developed. It was shown that the new correlation improves the accuracy of the Bell-Delaware method considerably. This result may induce the use of the Bell-Delaware method in developing a computer software for design of shell-and-tube heat exchangers.

A Study on Effects of the Fluid Flow Inner the Open Chamber by Baffle (배플에 의한 개방챔버 내부 유동의 영향에 관한 연구)

  • No, Byeang-Su;Choi, Joo-Yol;Jungr, Ha-Gyoon;Choe, Sang-Bom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.255-260
    • /
    • 2015
  • Flash evaporation phenomenon is affected by temperature, pressure and water level in the open chamber and Baffle etc. In this study, PIV experiments were conducted to ensured the flow Characteristics in the open chamber, and optimum baffle location and baffle height. Baffle had a considerable effect on the recirculation flow, hydraulic jump and the flow characteristics in the Open chamber, and influence of Reynolds number was insignificant. The optimum baffle height was about h/H=1.5. and optimum baffle location was x/H=1.5 from the inlet of open chamber.

Characteristics of Flow Field around Baffle Located Sudden Expansion and Contraction Open Channel using PIV Measurements (PIV실험을 통한 급확대 축소 개방채널에 설치된 배플 주위의 유동장특성)

  • Lee, Cheol-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.468-474
    • /
    • 2011
  • The flow field around baffle located sudden expansion and contraction channel was measured by PIV method and the effect according to height change of baffle built in the flow field was evaluated. The inlet flow velocity and the baffle height influence mutually to the size and flow pattern of the recycle flow of the back of the baffle and the size of the area of the water power jump passing the upper part of the baffle. In case of Reynolds number $Re=4{\times}10^3$, the critical value of baffle height is estimated around h/H=1.6 and there was a decreasing tendency as the inlet flow velocity was increased.