• Title/Summary/Keyword: Bacteriophages

Search Result 108, Processing Time 0.028 seconds

Effect of Bacteriophage Supplementation on the Growth Performance, Nutrient Digestibility, Blood Characteristics, and Fecal Microbial Shedding in Growing Pigs

  • Yan, L.;Hong, S.M.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1451-1456
    • /
    • 2012
  • A total of 144 ((Duroc${\times}$Yorkshire)${\times}$Landrace)) pigs with an average initial BW of $28.85{\pm}0.63$ kg were used in this 6-wk growth trial. Pigs were randomly allotted to 1 of 4 treatments in a completely random block design. Each dietary treatment consisted of 9 replicate pens, with 4 pigs per replicate. Dietary treatments included: i) NC (basal diet), ii) PC (NC+apramycin 0.5 g/kg), iii) BPT1 (NC+bacteriophage 0.25 g/kg) and iv) BPT2 (NC+bacteriophage 0.5 g/kg). The inclusion of antibiotics and bacteriophages did not affect the (p>0.05) ADG, ADFI and G:F compared with the basal diet. Dietary antibiotics and bacteriophages supplementation led to a higher (p<0.05) DM digestibility than the NC treatment. Pigs fed the bacteriophage supplemented diet increased (p<0.05) the N digestibility compared with those fed NC treatment. Supplementation of antibiotics led to a higher (p<0.05) energy digestibility than the NC treatment. No difference (p>0.05) was observed in the RBC, WBC, lymphocyte concentration and fecal moisture among treatments. Pigs fed PC and BPT2 treatments reduced (p<0.05) the E. coli concentration compared with those fed NC treatment. The inclusion of BPT2 treatment led to a higher (p<0.05) lactobacillus concentration compared with NC and PC treatment. Dietary antibiotic and bacteriophage supplementation reduced (p<0.05) the Salmonella concentration compared with NC treatment. In conclusion, our study suggested that bacteriophage at the level of 0.5 g/kg could be used as an antibiotics alternative for growing pigs.

Safety evaluation of bacteriophages for application as sanitizers (박테리오파지의 살균소독제 응용을 위한 안전성 평가)

  • Park, Do-Won;Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-112
    • /
    • 2020
  • To evaluate the safety of bacteriophages for application of sanitizer, endotoxin content and cell cytotoxicity of two Escherichia coli and four Staphylococcus aureus phages were determined. Endotoxin ratio was determined by the Limulus amebocyte lysate (LAL) assay as a test for representative biological endotoxin content. The average endotoxin average content of the 9 log PFU/mL lysate was 18.6 EU/mL and that of the 10 log PFU/mL lysate was 5.9 EU/mL, suggesting that the phage lysate was not suitable for clinical applications, but suitable for food pathogen control applications. To confirm the cell cytotoxicity of the phage lysates, MTT assay was performed using Raw 264.7 cells treated with 9 log PFU/mL phages. Results of the assay indicated that the phage lysates did not significantly decrease the cell viability (p>0.05). These results indicated that bacteriophages would be suitable as a food safety sanitizer.

Inactivation of various bacteriophages in wastewater by chlorination; Development of more reliable bacteriophage indicator systems for water reuse (하수 처리 과정의 염소 소독에 대한 여러 박테리오파지들의 저항성 평가; 물 재이용 과정의 안전성 관리를 위한 바이러스 지표미생물의 개발)

  • Bae, Kyung-Seon;Shin, Gwy-Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.285-291
    • /
    • 2016
  • There has been an accelerating increase in water reuse due to growing world population, rapid urbanization, and increasing scarcity of water resources. However, it is well recognized that water reuse practice is associated with many human health and ecological risks due to numerous chemicals and pathogenic microorganisms. Especially, the potential transmission of infectious disease by hundreds of pathogenic viruses in wastewater is one of the most serious human health risks associated with water reuse. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to chlorination in real wastewater in order to identify a more reliable bacteriophage indicator system for chlorination in wastewater. Different bacteriophages were spiked into secondary effluents from wastewater plants from three different geographic areas, and then subjected to various doses of free chlorine and contact time at $5^{\circ}C$ in a bench-scale batch disinfection system. The inactivation of ${\phi}X174$ was relatively rapid and reached ~4 log10 with a CT value of 5 mg/L*min. On the other hand, the inactivation of bacteriophage PRD1 and MS2 were much slower than the one for ${\phi}X174$ and only ~1 log10 inactivation was achieved by a CT value of 10 mg/L*min. Overall, the results of this study suggest that bacteriophage both MS2 and PRD1 could be a reliable indicator for human pathogenic viruses for chlorination in wastewater treatment processes and water reuse practice.

Bacteriophages: A New Weapon for the Control of Bacterial Blight Disease in Rice Caused by Xanthomonas oryzae

  • Ranjani, Pandurangan;Gowthami, Yaram;Gnanamanickam, Samuel S;Palani, Perumal
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.346-359
    • /
    • 2018
  • Xanthomonas oryzae, a bacterial pathogen causing leaf blight disease (BLB) in rice, can cause widespread disease and has caused epidemics globally, resulting in severe crop losses of 50% in Asia. The pathogen is seed-borne and is transmitted through seeds. Thus, control of BLB requires the elimination of the pathogen from seeds. Concern about environment-friendly organic production has spurred improvements in a variety of biological disease control methods, including the use of bacteriophages, against bacterial plant pathogens. The present study explored the potential of bacteriophages isolated from diseased plant leaves and soil samples in killing the bacterial pathogen in rice seeds. Eight different phages were isolated and evaluated for their bacteriolytic activity against different pathogenic X. oryzae strains. Of these, a phage designated ${\varphi}XOF4$ killed all the pathogenic X. oryzae strains and showed the broadest host range. Transmission electron microscopy of ${\varphi}XOF4$ revealed it to be a tailed phage with an icosahedral head. The virus was assigned to the family Siphoviridae, order Caudovirales. Seedlings raised from the seeds treated with $1{\times}10^8pfu/ml$ of ${\varphi}XOF4$ phage displayed reduced incidence of BLB disease and complete bacterial growth inhibition. The findings indicate the potential of the ${\varphi}XOF4$ phage as a potential biological control agent against BLB disease in rice.

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

Bacteriophage Cocktail Comprising Fifi044 and Fifi318 for Biocontrol of Erwinia amylovora

  • Byeori Kim;Seung Yeup Lee;Jungkum Park;Sujin Song;Kwang-Pyo Kim;Eunjung Roh
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.160-170
    • /
    • 2024
  • Erwinia amylovora is a plant pathogen that causes fire blight on apples and pears. Bacteriophages, which are viruses that selectively infect specific species of bacteria and are harmless to animal cells, have been considered as biological control agents for the prevention of bacterial pathogens. In this study, we aimed to use bacteriophages that infect E. amylovora as biocontrol agents against fire blight. We isolated bacteriophages Fifi044 and Fifi318 infecting E. amylovora, and characterized their morphology, plaque form, and genetic diversity to use as cocktails for disease control. The stabilities of the two phages were investigated at various temperatures and pH values and under sunlight, and long-term storage experiment was conducted for a year. To evaluate whether the two phages were suitable for use in cocktail form, growth curves of E. amylovora were prepared after treating the bacterial cells with single phages and a phage cocktail. In addition, a disease control test was conducted using immature apples and in vitro cultured apple plantlets to determine the biocontrol effects of the phage cocktail. The two phages were morphologically and genetically different, and highly stable up to 50℃ and pH value from 4 to 10. The phages showed synergistic effect when used as a cocktail in the inhibition of host bacterial growth and the disease control. This study demonstrated that the potential of the phage cocktail as a biocontrol agent for commercial use.

New Technologies for the Removal of Bacteriophages Contaminating Whey and Whey Products as Cheese by-Products: A Review (치즈 부산물인 유청과 유청 제품에 감염된 박테리오파지 제거를 위해 새롭게 개발된 기술: 총설)

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Hong-Seok;Song, Kwang-Young;Hwang, Dae-Geun;Yim, Jin-Hyuk;Kang, Il-Byung;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • In general, whey obtained from various cheese batches is being reused, so as to improve the texture and to increase the yield and the nutrient value of the various final milk-based products. In fact, re-usage of whey proteins, including whey cream, is a common and routine procedure. Unfortunately, most bacteriophages can survive heat treatments such as pasteurization. Hence, there is a high risk of an increase in the bacteriophage population during the cheese-making process. Whey samples contaminated with bacteriophages can cause serious problems in the cheese industry. In particular, the process of whey separation frequently leads to aerosol-borne bacteriophages and thus to a contaminated environment in the dairy production plant. In addition, whey proteins and whey cream reused in a cheese matrix can be infected by bacteriophages with thermal resistance. Therefore, to completely abolish the various risks of fermentation failure during re-usage of whey, a whey treatment that effectively decreases the bacteriophage population is urgently needed and indispensable. Hence, the purpose of this review is to introduce various newly developed methods and state-of-the-art technologies for removing bacteriophages from contaminated whey and whey products.

  • PDF

Isolation of Bacteriophages Which Can Infect Pectobacteirum carotovorum subsp. carotovorum (Pectobacterium carotovorum subsp. carotovorum을 침해하는 박테리오파지의 분리)

  • Jee, Sam-Nyu;Malhotra, Shweta;Roh, Eun-Jung;Jung, Kyu-Suk;Lee, Dong-Whan;Choi, Jae-Hyuk;Yoon, Jong-Chul;Heu, Sung-Gi
    • Research in Plant Disease
    • /
    • v.18 no.3
    • /
    • pp.225-230
    • /
    • 2012
  • Bacteriophages of Pectobacterium carotovorum subsp. carotovorum which causes soft rot on diverse vegetables had been isolated from 6 major Chinese cabbage cultivation areas in Korea. In order to isolate bacteriophages, total 15 different strains of P. carotovorum subsp. carotovorum isolated from nation-wide of Korea had been used as a host. When we tested 30 different soil samples individually from Pyeongchang and Taebaek with 15 different strains as a host, Taebek soil samples showed bacteriophage plaques with almost all different indicator strains but Pyeongchang soil samples showed plaques only with P. carotovorum subsp. carotovorum Pcc2 and Pcc3 strains. Especially, P. carotovorum subsp. carotovorum Pcc3 strain was able to produce plaques with almost all soil samples. Thus, this strain can be used as an indicator strain for P. carotovorum subsp. carotovorum bacteriophage screening. Electron microscope observation revealed P. carotovorum subsp. carotovorum bacteriophages isolated in Korea were belonged to three different families, Myoviridae, Siphoviridae and Podoviridae in order Caudovirales.

Rapid detection of shiga-toxin producing E. coli by bacteriophage amplification assay (박테리오파지 증폭 기법을 활용한 시가 독소 생성 병원성 대장균의 신속 검출)

  • Baek, Da-Yun;Park, Jong-Hyun;Cho, Seok-Cheol;Lee, Young-Duck
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.103-108
    • /
    • 2020
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacteria and can cause severe foodborne disease. For STEC detection, conventional culture methods have disadvantages in the fact that conventional culture takes a long time to detect and PCR can also detect dead bacteria. To overcome these problems, we suggest a bacteriophage amplification assay, which utilizes the ability of bacteriophages to infect living cells and their high specificity. We used a combination of six bacteriophages infecting E. coli to make the bacteriophage cocktail and added ferrous ammonium sulfate as a virucidal agent to remove free-bacteriophages. When cherry tomato and paprika were artificially inoculated with the cocktail at a final concentration of around 3 log CFU/mL and were enriched for at least 5 h in mTSB broth with Novobiocin, approximately 2-3 log PFU/mL were detected through the bacteriophage amplification assay. Therefore, bacteriophage amplification assay might be convenient and a useful method to detect STEC in a short period of time.