• Title/Summary/Keyword: Bacterial transport

Search Result 73, Processing Time 0.022 seconds

미생물의 토양 투과성에 영향을 미치는 미생물 표면 및 용액 특성

  • 김용미;류두현;김호영;서성원;정남희;안병구;박준석
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.319-322
    • /
    • 2002
  • The bacterial transport in soil media was studied. Nonionic surfactants, enhanced the bacterial transports in soil media. The transport rate in soil column was increased by increasing the number of ethylene oxide in polyoxyethylene oxide surfactants. Ionic strength of solution affected the microbial transport characteristics in soil. The hydrophobicity of cell surface was proved that one of important characteristics on the bacterial transport in soil media.

  • PDF

Evaluation of Bacterial Transport Models for Saturated Column Experiments

  • Ham, Young-Ju;Kim, Song-Bae;Kim, Min-Kyu;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.55-63
    • /
    • 2006
  • Bacterial transport models were evaluated in this study to determine the suitable model at describing bacterial transport in saturated column experiments. Four models used in the evaluation were: advective-dispersive equation (ADE) + equilibrium sorption/retardation (ER) + kinetic reversible sorption (KR) (Model I), ADE + two-site sorption (Model 2), ADE + ER + kinetic irreversible sorption (KI) (Model 3), ADE + KR + KI (Model 4). Firstly, analyses were performed with the first experimental data, showing that Model 4 is appropriate for describing bacterial transport. Even if Model 1 and 2 fit well to the observed data, they have a defect of not including the irreversible sorption, which is directly related to mass loss of bacteria. Model 3 can not properly describe the tailing observed in the data. However, further analysis with the second data indicates that Model 4 can not describe retardation of bacteria, even if the sorption-related parameters are varied. Therefore, Model 4 is modified by incorporating retardation factor into the model, resulting in the improved fitting to the data. It indicates that the transport model, into which retardation, kinetic reversible sorption, and kinetic irreversible sorption are incorporated, is suitable at describing bacterial transport in saturated column experiments. It is expected that the selected transport model could be applied to properly analyze the bacterial transport in saturated porous media.

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Kinetic Adsorption Relationships (동역학적 흡착 관계식을 이용한 다공 매질에서의 유동세균에 의한 유기성 오염물의 가속이송 예측 모델)

  • 김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1995
  • Mobile bacterial particles can act as carriers and enhance the transport of hydrophobic contaminants in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions, bacteria can act as efficient contaminant carriers. When such carriers exist in a porous medium, the system can be thought of as three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. Contaminant can be present in either or all of these phases. In this study, a mathematical model based on mass balances is developed to describe the transport and fate of biodegradable contaminant in a porous medium. Bacterial mass transfer mechanism between aqueous and solid matrix phases, and contaminant mass transfer between aqueous and bacterial phases are represented by kinetic models. Governing equations are non-dimensionalized and solved to analyze the bacteria facilitated contaminant transport. The numerical results of the facilitation effect match favorably with experimental data reported in the literature. Results show that the contaminant transport can be described by local equilibrium assumption when Damkohler numbers are larger than 10. Significant sensitivities to model parameters, particularly bacterial growth rate and influent bacterial concentration, were discovered.

  • PDF

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

Remediation of Diesel-Contaminated Soil by Electrokinetically Supplied Bacterial Cells

  • 이효상;이기세
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.20-23
    • /
    • 2000
  • The use of electrokinetic injection and transport for the distribution of an NAPLs-degrading microorganism in a sandy soil bed was studied. After the injection of the cell into cathode side of bed, an electric current was applied. The transport of cell though the sandy soil was achieved by electokinetics, mainly by electrophoresis, The pH control in electrode chamber plays un important role to achieve desirable cell transport because H$^{+}$ generated at anode is toxic or inhibits the transport of cells. Electokinetic distribution rate of bacterial cells changed depending on the applied electric current and pH. The degradation of diesel by electrokinetically transport cells were monitored.d.

  • PDF

Adhesion and Transport of Bacteria in Iron-coated Media (철코팅 여재에서 박테리아의 부착 및 이동)

  • Lee, Chang-Gu;Park, Seong-Jik;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.833-838
    • /
    • 2007
  • In this study, adhesion and transport of bacteria in positively-charged media was investigated with batch and column experiments. Bacterial species used in this study was Escherichia coli ATCC 11105(length: 2.2 ${\mu}m$, diameter: 0.6 ${\mu}m$) and media used were quartz sand(particle size distribution: 0.5-2.0 mm, mean diameter: 1.0 mm) and iron-coated sand. Batch results indicate that bacterial adhesion increased as the content of iron-coated media increased. At iron-coated media 0%(quartz sand 100%), around 46% of bacteria was adhered to media while at iron-coated media 100%(quartz sand 0%) about 97% was attached. Column results also show that bacterial adhesion was enhanced with an increase of iron-coated media content. As the iron-coated media content increased from 0 to 100%, bacterial adhesion increased from 8 to 94%. The experimental results demonstrate that positively-charged media could influence transport of bacteria in porous media.

Influence of Surfactants on Enhancing Transport of Bacteria in Geological Materials (지질매질체내에서 계면활성제가 박테리아 이동 증진에 미치는 영향)

  • Choi, Nag-Choul;Park, Seong-Jik;Kim, Song-Bae;Kim, Dong-Ju;Lee, Seong-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1017-1023
    • /
    • 2010
  • This study investigated the effect of surfactants (nonionic surfactant (Tween 20), biosurfactant) on enhancing transport of bacteria (Bacillus subtilis ATCC 6633) in geological materials. Column experiments were performed under various surfactant conditions with columns packed with quartz sand (particle size distribution: 0.5~2.0 mm, mean diameter: 1.0 mm). Bacterial mass recovery, sticking efficiency, and other parameters were quantified from breakthrough curves. Results indicate that bacterial attachment to sand surfaces increased considerably in the presence of mineral salt medium (MSM), especially at the inlet, which was due to the increase of ionic strength by MSM. It was observed that bacterial transport in sand columns was enhanced in the presence of surfactant. Results also show that simultaneous injection of both surfactant and MSM or pre-injection of surfactant was more effective in bacterial transport enhancement than after-injection of surfactant. This study suggests that transport of bacteria in geological materials could be influenced by surfactants and their injection methods.

Microbiological quality of pork meat in the stage of slaughter process (도축공정중 식육의 미생물 오염실태 조사)

  • 김은주;강원명;정경주;김우택;김진회;전창익;임윤규
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.4
    • /
    • pp.361-366
    • /
    • 2000
  • The growth of bacteria on the surface of the meat was monitored to investigate the relationships between microbiological quality and some environmental factors such as the chilling temperature, alcohol spraying, and transport in slaughter process of pigs. The temperature changes of the surface and inner part of pork carcass were monitored with GreenTrack$\textregistered$ system during the process of chilling and transport Of the 100pigs tested, the prevalence of level on number of standard plate count (SPC) less than $10^4$ CFU/$\textrm{cm}^2$ and Escherichia coli less than $10^2$ CFU/$\textrm{cm}^2$ in pig were 82% and 80%, respectively. Suface bacterial numbers are decreased in the course of chilling process of the carcass. Alcohol spray process before packing meat also could decrease the surface bacterial count. In conclusion, this study could be overemphasized the importance of relationship between microbiological quality and refrigerating temperature in the process of refrigeration and cutting.

  • PDF

Genes Involved in the Biosynthesis and Transport of Acinetobactin in Acinetobacter baumannii

  • Hasan, Tarik;Choi, Chul Hee;Oh, Man Hwan
    • Genomics & Informatics
    • /
    • v.13 no.1
    • /
    • pp.2-6
    • /
    • 2015
  • Pathogenic bacteria survive in iron-limited host environments by using several iron acquisition mechanisms. Acinetobacter baumannii, causing serious infections in compromised patients, produces an iron-chelating molecule, called acinetobactin, which is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), L-threonine, and N-hydroxyhistamine, to compete with host cells for iron. Genes that are involved in the production and transport of acinetobactin are clustered within the genome of A. baumannii. A recent study showed that entA, located outside of the acinetobactin gene cluster, plays important roles in the biosynthesis of the acinetobactin precursor DHBA and in bacterial pathogenesis. Therefore, understanding the genes that are associated with the biosynthesis and transport of acinetobactin in the bacterial genome is required. This review is intended to provide a general overview of the genes in the genome of A. baumannii that are required for acinetobactin biosynthesis and transport.

Changes in Structural and Functional Responses of Bacterial Communities under Different Levels of Long-Term Compost Application in Paddy Soils

  • Samaddar, Sandipan;Han, Gwang Hyun;Chauhan, Puneet Singh;Chatterjee, Poulami;Jeon, Sunyoung;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.292-296
    • /
    • 2019
  • Soils amended for long-term with high levels of compost demonstrated greater abundance of bacterial members of the phylum Bacteroidetes whereas a decreasing trend in the relative abundance of phylum Acidobacteria was noted with increasing levels of compost. Metabolic profiles predicted by PICRUSt demonstrated differences in functional responses of the bacterial community according to the treatments. Soils amended with lower compost levels were characterized by abundance of genes encoding enzymes contributing to membrane transport and cell growth whereas genes encoding enzymes related to protein folding and transcription were enriched in soils amended with high levels of compost. Thus, the results of the current study provide extensive evidence of the influence of different compost levels on bacterial diversity and community structure in paddy soils.