• Title/Summary/Keyword: Bacterial density

검색결과 320건 처리시간 0.023초

Effect of Bacterial and Algal Symbiotic Reaction on the Removal of Organic Carbon in River Ecosystem (하천 생태계에서 유기탄소 기질 제거에 조류와 세균의 공생작용이 미치는 영향)

  • 공석기;도시유끼나까지마
    • Journal of environmental and Sanitary engineering
    • /
    • 제16권3호
    • /
    • pp.22-27
    • /
    • 2001
  • It have been investigated how algal and bacterial symbiotic reaction influences on removal of organic carbon in river ecosystem. And artificial experimentation apparatus was made for algae'and bacteia'culture as lab scale. Investigating and researching minutely the change of concentration of organic carbon substrate and the change of population density of algae'and of bacteria'with this artificial experimentation apparatus, the next results could be obtained. 1. Successful decrease of DOC(dissolved organic carbon) could not be expected unless algal and bacterial biomass floe was nut formed effectively and unless biosorption was not proceeded effectively in the very culture system in which artificial synthetic wastewater was supplied continuously at constant rate. 2. In conditions of culture liquid of 1335 glucnse mg/L(type 1) and of 267 glucose mg:L(type 2), the algal dominant species was always Chlorella vulgaris in both types in which artificial synthetic wastewater were supplied continuously at constant rate and algae population density was around maximum 107 cells/mL. 3. It was around 108 ~ 107 cells/mL that the population density of heterotrophic bacterium. In culture medium systems type 1 and type 2 in which artificial wastewater were supplied continuously at constant rate, the same density appeared initially when using the population density of Escherichia coli w 3110 as indirect indicator. And this density decreased rapidly till the culturing date 35 days were passed away, while this density increased with gentle slope after same date and then the trend of change at type 2 was more severe than one at type 1. 4. When seeing such a change of population density of Escherichia coli w 3110, the growth of heterotrophic bacterium appeared as survival instinct pattern of broader requirement of nutrient at condition of low concentration of organic carbon substrate than condition of high concentration of same substrate.

  • PDF

Effects of Antibiotics on the Uterine Microbial Community of Mice

  • Sang-Gyu Kim;Dae-Wi Kim;Hoon Jang
    • Development and Reproduction
    • /
    • 제26권4호
    • /
    • pp.145-153
    • /
    • 2022
  • The gut microbiota is involved in the maintenance of physiological homeostasis and is now recognized as a regulator of many diseases. Although germ-free mouse models are the standard for microbiome studies, mice with antibiotic-induced sterile intestines are often chosen as a fast and inexpensive alternative. Pathophysiological changes in the gut microbiome have been demonstrated, but there are no reports so far on how such alterations affect the bacterial composition of the uterus. Here we examined changes in uterine microbiota as a result of gut microbiome disruption in an antibiotics-based sterile-uterus mouse model. Sterility was induced in 6-week-old female mice by administration of a combination of antibiotics, and amplicons of a bacteria marker gene (16S rRNA) were sequenced to decipher bacterial community structures in the uterus. At the phylum-level, Proteobacteria, Firmicutes, and Actinobacteria were found to be dominant, while Ralstonia, Escherichia, and Prauserella were the major genera. Quantitative comparisons of the microbial contents of an antibiotic-fed and a control group revealed that the treatment resulted in the reduction of bacterial population density. Although there was no significant difference in bacterial community structures between the two animal groups, β-diversity analysis showed a converged profile of uterus microbiotain the germ-free model. These findings suggest that the induction of sterility does not result in changes in the levels of specific taxa but in a reduction of individual variations in the mouse uterus microbiota, accompanied by a decrease in overall bacterial population density.

Effect of Filler Addition on Properties of Sheets Prepared from Bacterial Cellulose (박테리아 셀룰로오스 시트의 물성에 미치는 충전제의 첨가효과)

  • 조남석;민두식
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제30권4호
    • /
    • pp.35-41
    • /
    • 1998
  • The bacterial cellulose has many unique properties that are potentially and commercially beneficial. In order to make opaque product from this cellulose, filling properties by fillers should be known. This study was performed to investigate the effect of filler addition on physical properties of sheets from bacterial cellulose. The effect of filling on its optical properties was also discussed. The apparent density and internal bonding strength of bacterial cellulose sheet are decreasing with the increase of filler contents. Those adversely affect Young's modulus and physical property of the sheet, but these negative phenomena of the bacterial cellulose sheet by filler addition are not so sensitive compared to substantial decreasing of physical properties of ordinary hardwood KP. This strength decrease would be attributed to the decrease of relative bonding sites among pulp fibers. Concerned to optical properties, the bacterial cellulose sheet shows high increase of brightness and opacity according to filler loading, but no significant changes in porosity up to 17.3% loading because of fine and filamentous structure of bacterial cellulose fibers.

  • PDF

Mechanical Properties of Papers Prepared from Hardwood KP and Bacterial Cellulose (활엽수크라프트펄프 및 박테리아 셀룰로오스부터 제조한 종이의 물성)

  • 조남석;김영신;박종문;민두식;안드레레오노비치
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제29권4호
    • /
    • pp.53-63
    • /
    • 1997
  • Most cellulose resources come from the higher plants, but bacteria also synthesize same cellulose as in plants. Many scientists have been widely studied on the bacterial cellulose, the process development, manufacturing, even marketing of cellulose fibers. The bacterial celluloses are very different in its physical and morphological structures. These fibers have many unique properties that are potentially and commercially beneficial. The fine fibers can produce a smooth paper with enchanced its strength property. But there gave been few reports on the mechanical properties of the processing of bacterial cellulose into structural materials. This study were performed to elucidate the mechanical properties of sheets prepared from bacterial cellulose. Also reinforcing effect of bacterial cellulose on the conventional pulp paper as well as surface structures by scanning electron microscopy were discussed. Paper made from bacterial cellulose is 10 times much stronger than ordinary chemical pulp sheet, and the mixing of bacterial cellulose has a remarkable reinforcing effect on the papers. Mechanical strengthes were increased with the increase of bacterial cellulose content in the sheet. This strength increase corresponds to the increasing water retention value and sheet density with the increase of bacterial cellulose content. Scanning electron micrographs were shown that fine microfibrills of bacterial celluloses covered on the surfaces of hardwood pulp fibers, and enhanced sheet strength by its intimate fiber bonding.

  • PDF

Population Density Changes of Bacteria and Soybean Sprout Rotting Bacteria on Soybean Leaves (콩 잎에 서식하는 세균 및 콩나물 부패균의 밀도 변화)

  • 최재을;이은정;신철우
    • Korean Journal of Plant Resources
    • /
    • 제12권2호
    • /
    • pp.152-160
    • /
    • 1999
  • Bacterial population density on soybean leaves was $10^2~10^5CFU/cm^2$. Bacterial population density was increased by progress of plant growth stage. Population density of soybean sprout rotting bacteria on soybean leaves was $0~10^3CFU/cm^2$. Population density of soybean sprouts rotting bacteria was related to cultivating area, but not related to plant growth stage. Cultivar and population density of soybean sprout rotting bacteria were less corelated, and varied by plant growth stages and plant parts. Erwina cypripedii, E. carotovora subsp. carotovora, Xanthomonas campestris pv. glycines, Staphylococcus sp., and Micrococcus sp. were identified as pathogenic bacteria causing soybean sprout rot. In generally population density of E. cypripedii, E. carotovora subsp. carotovora, Micrococcus sp., and X. campestris pv. glycines were high.

  • PDF

Studies on the Inheritance of Resistance to Bacterial Wilt(Ralstonia solanacearum) in Tobacco(Nicotiana tabacum L.) (연초의 세균성마름병 저항성 유전에 관한 연구)

  • 정석훈
    • Journal of the Korean Society of Tobacco Science
    • /
    • 제22권1호
    • /
    • pp.25-30
    • /
    • 2000
  • Bacterial wilt(Ralstonia solanacearum) is one of the major diseases of flue-cured tobacco (Nicotiana tabacum L.) in the world. This study was conducted to investigate degree of dominance, selection, and correlation between leaf shape and degree of bacterial wilt resistance in flue-cured tobacco. The degree of disease caused by bacterial wilt was evaluated in parents, F$_1$, F$_2$ and F$_3$ populations of two crosses, BY 4 x NC 95 and BY 4 x Coker 86, in the infected field. The leaf shape index was also measured in parents and F$_2$ population of BY 4 x NC 95. The incidence of bacterial wilt was observed in the middle of June and peaked in late July, when the highest value of pathogen density reached 1.0 x 10$^{6}$ colony forming unit per gram. It was concluded that the inheritance mode of risestance to bacterial wilt in the above two crosses of susceptible and resistant varieties was recessive and polygenic. The resistance to bacterial wilt was significantly correlated with leaf shape in F2 generation of BY 4 x NC 95. But certain plants having narrower leaves were also resistant to bacterial wilt. It is considered that the bacterial wilt resistant lines having narrower leaves could be selected. The selection for bacterial wilt resistance in the F$_2$ population might be effective.

  • PDF

Investigation of marine bacteria for the food of Tigriopus japonicus Mori(Harpacticoida) (동물플랑크톤 Harpacticoid, Tigriopus japonicus Mori 배양에 유효한 해양세균의 탐색)

  • Lee Won-Jae;TAGA Nobuo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제21권1호
    • /
    • pp.50-56
    • /
    • 1988
  • In order to fine some proper bacterial food for Tigriopus japoncus, bacterial flora of the tide pool inhabited by the copepod has been isolated and tested as bacterial food. Food effect and optimum density of the bacteria in terms of survival rate of the copepod was measured in the larval and the adult stages. Among the 264 strains of isolated bacteria, Acinetobacter spp. Moraxella, spp., Flavobacterium spp. and Pseudomonas spp. were certified as effective food for the copepod. According to the experimental results, Acinetobacter spp. AG-3 was the most effective food for all the stages from nauplius to adult, while Moraxella spp. and Flavobacterium spp. were effective for copepodite stage, and Pseudomonas spp. for the adult stage only. The optimum density of bacteria for the food was about $10^6\;cell/ml$, which was the same average density of bacteria in the tide pool.

  • PDF

A Screening Method on Resistance of Tobacco Plants to Bacterial Wilt (세균성마름병에 대한 담배의 저항성검정 방법)

  • 이영근
    • Journal of the Korean Society of Tobacco Science
    • /
    • 제24권1호
    • /
    • pp.27-31
    • /
    • 2002
  • Three kinds of inoculation methods, capillary, root cutting and dipping were compared for an efficient way to screening the resistant tobacco variety against bacterial wilt, Ralstonia solanacearum. The pricking a capillary tube contained the pathogenic bacterial suspension(10$^{7}$ cfu/$m\ell$) to an axillary bud of each tobacco plant showed different resistance well between varieties. The less period was required in inoculating work and in disease development for the inoculation method used with capillary tube than for two other inoculation methods tested also.

Comparison of Bioleaching Kinetics of Spent Catalyst by Adapted and Unadapted Iron & Sulfur Oxidizing Bacteria - Effect of Pulp Density; Particle Size; Temperature

  • Pradhan, Debabrata;Kim, Dong-Jin;Ahn, Jong-Gwan;Gahan, Chandra Sekhar;Chung, Hun-Saeng;Lee, Seoung-Won
    • Korean Journal of Metals and Materials
    • /
    • 제49권12호
    • /
    • pp.956-966
    • /
    • 2011
  • Bioleaching studies of metals from a spent catalyst were conducted using both adapted and unadapted bacterial cultures. The bacterium used in this experiment was Acidithiobacillus ferrooxidans. A comparison of the kinetics of leaching was made between the two cultures by varying the leaching parameters, including the pulp density, particle size and temperature. Both cultures showed similar effects with respect to the above parameters, but the leaching rates of all metals were higher with the adapted compared to the unadapted bacterial cultures. The leaching reactions were continued for 240 h in the case of the unadapted bacterial culture, but only for 40 h in the case of the adapted bacterial culture. The leaching reactions followed first order kinetics. In addition, the kinetics of leaching was concluded to be a diffusion control model; therefore, the product layers were impervious.

Streptococcus suis causes bacterial meningitis with hearing loss in patients without direct exposure to pigs in a regional pork industry territory

  • Joong-Goo Kim;Gil Myeong Seong;Young Ree Kim;Sang Taek Heo;Jeong Rae Yoo
    • Journal of Medicine and Life Science
    • /
    • 제20권1호
    • /
    • pp.43-47
    • /
    • 2023
  • Streptococcus suis (S. suis) is an emerging zoonotic pathogen that causes bacterial meningitis in humans. S. suis is an encapsulated gram-positive facultative anaerobic bacterium and is an important pathogen in pigs. This infectious disease usually manifests in humans as meningitis, endocarditis, septicemia, and arthritis. Most cases originate in Southeast Asia, and human S. suis infections are often reported in countries with a high density of pigs. Meningitis is a common clinical manifestation of S. suis infection. Moreover, hearing loss is a common complication that can be bilateral, profound, and/or permanent. This report presents two cases of bacterial meningitis and hearing loss caused by S. suis in patients without a history of direct exposure to pigs in an intensive pork industry region.