• Title/Summary/Keyword: Bacterial Production

Search Result 1,588, Processing Time 0.032 seconds

Distribution and Growth of Bacteria in the Hypertrophic Lake Shiwha (과영양성 시화호에서 박테리아의 분포 및 성장)

  • Choi, Dong-Han;Kang, Sulk-Won;Song, Ki-Don;Huh, Sung-Hoi;Cho, Byung-Cheol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.92-100
    • /
    • 1997
  • Distribution of bacterial abundance and production was investigated during October, 1995-August, 1996 in Lake Shiwha constructed artificially in 1994. Its water column was distinguished by two layers: the brackish surface layer with salinity ranged from 6 to 20‰ and the saline hypoxic/anoxic bottom layer with salinity of 17 to 27‰ Except for samples collected in March, 1996 (on average 13 ${\mu}g\;l^{-1}$), chlorophyll a concentration ranged from 27.6 to 249.5 ${\mu}g\;l^{-1}$ in the euphotic zone, indicating the hypertrophic condition of Lake Shiwha during most of the studied period. In this study, bacterial productions measured by $^3H$-thymidine incorporation method were similar to those by $^{14}C$-leucine incorporation method. In hypertrophic, surface waters of Lake Shiwha, bacterial abundance and production ranged from 1.4 to $19.5{\times}10^9\;cells\;l^{-1}$ and from 1.6 to $126.5{\times}10^7\;cells\;l^{-1}\;h^{-1}$ respectively; 2 to 4 fold and 2 to 30 fold higher than those in eutrophic coastal waters outside of Lake Shiwha, respectively. Turnover times of bacterial community in the surface layer of Lake Shiwha ranged from 0.2 to 8.9 day, indicating that bacteria in the lake seemed to adapt to the hypertrophic condition. In the hypoxic bottom layer, bacterial abundance and production was up to 3 fold and 20 fold lower than those in the surface layer, and showed slow bacterial growth. Significant correlations between the bacterial abundance, production, and community turnover time with water temperature indicate water temperature was the important factor controlling distribution and growth of bacteria. However, during summer season, bacterial production seemed to be regulated by supply of substrates.

  • PDF

Effect of Lactobacillus mucosae on In vitro Rumen Fermentation Characteristics of Dried Brewers Grain, Methane Production and Bacterial Diversity

  • Soriano, Alvin P.;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Jeong, Chang Dae;Bae, Gui Seck;Chang, Moon Baek;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1562-1570
    • /
    • 2014
  • The effects of Lactobacillus mucosae (L. mucosae), a potential direct fed microbial previously isolated from the rumen of Korean native goat, on the rumen fermentation profile of brewers grain were evaluated. Fermentation was conducted in serum bottles each containing 1% dry matter (DM) of the test substrate and either no L. mucosae (control), 1% 24 h broth culture of L. mucosae (T1), or 1% inoculation with the cell-free culture supernatant (T2). Each serum bottle was filled anaerobically with 100 mL of buffered rumen fluid and sealed prior to incubation for 0, 6, 12, 24, and 48 h from which fermentation parameters were monitored and the microbial diversity was evaluated. The results revealed that T1 had higher total gas production (65.00 mL) than the control (61.33 mL) and T2 (62.00 mL) (p<0.05) at 48 h. Consequently, T1 had significantly lower pH values (p<0.05) than the other groups at 48 h. Ammonia nitrogen ($NH_3$-N), individual and total volatile fatty acids (VFA) concentration and acetate:propionate ratio were higher in T1 and T2 than the control, but T1 and T2 were comparable for these parameters. Total methane ($CH_4$) production and carbon dioxide ($CO_2$) were highest in T1. The percent DM and organic matter digestibilities were comparable between all groups at all times of incubation. The total bacterial population was significantly higher in T1 (p<0.05) at 24 h, but then decreased to levels comparable to the control and T2 at 48 h. The denaturing gradient gel electrophoresis profile of the total bacterial 16s rRNA showed higher similarity between T1 and T2 at 24 h and between the control and T1 at 48 h. Overall, these results suggest that addition of L. mucosae and cell-free supernatant during the in vitro fermentation of dried brewers grain increases the VFA production, but has no effect on digestibility. The addition of L. mucosae can also increase the total bacterial population, but has no significant effect on the total microbial diversity. However, inoculation of the bacterium may increase $CH_4$ and $CO_2$ in vitro.

Production and Structural Analysis of Cellulose by Acetobacter sp. V6 Using Static Culture (정치배양을 이용하여 Acetobacter sp. V6의 셀룰로오스 생산 최적화 및 구조 분석)

  • Kim, Jeong-Do;Jung, Ho-Il;Jeong, Jin-Ha;Park, Ki-Hyun;Jeon, Young-Dong;Hwang, Dae-Youn;Lee, Chung-Yeol;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.275-280
    • /
    • 2009
  • The optimal medium compositions for the production of bacterial cellulose (BC) by a Acetobacter sp. V6, which was isolated from the traditionally fermented vinegar in Korea, were investigated in static cultures. The optimum medium compositions for BC production were 3% glucose, 3% soytone, 0.8% $K_2HPO_4$, and 0.4% ethanol, respectively. Adding $NaH_2PO_4$ or $KH_2PO_4$ had not shown the increase in BC production. Under the optimum medium compositions, the highest BC production was 44.67 g/$m^2$ in 8 days and the thickness of BC pellicle was about 1 cm. Structural properties of BC produced in the optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose. No difference in the compositions between bacterial and plant celluloses, but BC showed unique micro-network structure and high crystallinity (82%).

Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process

  • Sasaki, Hiraku;Nonaka, Jun;Otawa, Kenichi;Kitazume, Osamu;Asano, Ryoki;Sasaki, Takako;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.

Bacterial diseases of flounder, Paralichthys olivaceus (넙치의 세균성(細菌性) 질병(疾病))

  • Kanai, Kinya
    • Journal of fish pathology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 1993
  • Flounder culture has been developed mainly in the western parts of japan, and, to date, following six bacterial diseases have been reported. Bacterial white enteritis occurs in 16 to 30-day-old flounder larvae and often causes mass mortality in seed production. Bacterium named Vibrio sp. INFL invades and multiplies in the mucosae of posterier part of intestine, and causes desquamative enteritis. Gliding bacterial disease occurs mostly in juvenile stage and in spring to summer. Diseased signs are partial discoloration and erosion of skin and fins. Histologically, epidermis are removed, and the causative bacterium, Flexibacter maritimus, multiplies on the surface of demis and invades into the muscular tissue. Vibriosis caused by Vibrio anguillarum and related organisum is one of the well-known diseases among marine fish. Outbreaks of the disease in flounder culture are relatively few, but mass mortalities in fingerlings due to the disease were reported. An outbreak of nocardiosis in the autumn of 1984 has been reported, but since then the disease scarcely occurred. The disease is characterized by formation of abscesses under the skin and white nodes in the gill, heart, spleen and kidney. Streptococcicosis occurs frequently in recent years. Beta-hemolytic streptococcus is the causative bacterium, which possesses the same biochemical and serological characteristics as $\beta$-streptococci isolated from some marine and freshwater fish, and is seemed to related to Streptococcus iniae. Edwardsiellosis is the disease that causes most damage in flounder culture in Japan. Characteristic symptoms are swelling of abdomen and intestinal protrusion from the anus due to accumulation of ascites. Edwardsiella tarda, a well-known pathogen of freshwater fish, is the causative bacterium of the disease.

  • PDF

Identification and Characterization of Novel Biocontrol Bacterial Strains

  • Lee, Seung Hwan;Kim, In Seon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera.

Physiological understanding of host-microbial pathogen interactions in the gut

  • Lee, Sei-Jung;Choi, Sang Ho;Han, Ho Jae
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.57-66
    • /
    • 2016
  • The gut epithelial barrier, which is composed of the mucosal layer and the intestinal epithelium, has multiple defense mechanisms and interconnected regulatory mechanisms against enteric microbial pathogens. However, many bacterial pathogens have highly evolved infectious stratagems that manipulate mucin production, epithelial cell-cell junctions, cell death, and cell turnover to promote their replication and pathogenicity in the gut epithelial barrier. In this review, we focus on current knowledge about how bacterial pathogens regulate mucin levels to circumvent the epithelial mucus barrier and target cell-cell junctions to invade deeper tissues and increase their colonization. We also describe how bacterial pathogens manipulate various modes of epithelial cell death to facilitate bacterial dissemination and virulence effects. Finally, we discuss recent investigating how bacterial pathogens regulate epithelial cell turnover and intestinal stem cell populations to modulate intestinal epithelium homeostasis.

Relationship of Somatic Cell Count and Mastitis: An Overview

  • Sharma, N.;Singh, N.K.;Bhadwal, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.429-438
    • /
    • 2011
  • Mastitis is characterized by physical, chemical and bacteriological changes in the milk and pathological changes in the glandular tissue of the udder and affects the quality and quantity of milk. The bacterial contamination of milk from the affected cows render it unfit for human consumption and provides a mechanism of spread of diseases like tuberculosis, sore-throat, Q-fever, brucellosis, leptospirosis etc. and has zoonotic importance. Somatic cell count (SCC) is a useful predictor of intramammary infection (IMI) that includes leucocytes (75%) i.e. neutrophils, macrophages, lymphocytes, erythrocytes and epithelial cells (25%). Leucocytes increase in response to bacterial infection, tissue injury and stress. Somatic cells are protective for the animal body and fight infectious organisms. An elevated SCC in milk has a negative influence on the quality of raw milk. Subclinical mastitis is always related to low milk production, changes to milk consistency (density), reduced possibility of adequate milk processing, low protein and high risk for milk hygiene since it may even contain pathogenic organisms. This review collects and collates relevant publications on the subject.

Production and Microbiological Characteristics of Fermented Sausages (발효소시지의 생산과 미생물적 특성)

  • Benno Kunz
    • Food Science of Animal Resources
    • /
    • v.23 no.4
    • /
    • pp.361-375
    • /
    • 2003
  • In this study, significant factors influencing on the quality and stability of fermented sausage, such as materials, processing conditions, and microbiological characteristics as well as topography during ripening, were documented. Since most fermented sausages are not heated during manufacture or before consumption, a strict control of the growth of pathogens and the selection of favourable conditions that encourage the specific growth and development of desirable microflora are particularly important. With respect to microbiological safety, hurdles, i.e., preservations(nitrite), redox potential, competitive flora, acidity(pH), and water activity($a_{w}$) are matters of importance to prevent proliferation of bacterial pathogens. Today, for ensuring the safety and quality of the final product, the application of starter cultures in combination with the proper processing is subsequently used in practice. For improving the efficiency of microbiological utility in the production of fermented sausages, the understanding of their topography is essential. The documented different points must be taken into account when HACCP systems set up for the manufacture of fermented sausages. There are continuous researches concerning desirable improvements to sausage fermentation with health enhancing properties.