• Title/Summary/Keyword: Bacterial DNA

Search Result 1,101, Processing Time 0.028 seconds

Isolation and Identification of Antifungal Compounds from $Bacillus$ $subtilis$ C9 Inhibiting the Growth of Plant Pathogenic Fungi

  • Islam, Md. Rezuanul;Jeong, Yong-Tae;Lee, Yong-Se;Song, Chi-Hyun
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Antagonistic microorganisms against $Rhizoctonia$ $solani$ were isolated and their antifungal activities were investigated. Two hundred sixteen bacterial isolates were isolated from various soil samples and 19 isolates were found to antagonize the selected plant pathogenic fungi with varying degrees. Among them, isolate C9 was selected as an antagonistic microorganism with potential for use in further studies. Treatment with the selected isolate C9 resulted in significantly reduced incidence of stem-segment colonization by $R.$ $solani$ AG2-2(IV) in Zoysia grass and enhanced growth of grass. Through its biochemical, physiological, and 16S rDNA characteristics, the selected bacterium was identified as $Bacillus$ $subtilis$ subsp. $subtilis$. Mannitol (1%) and soytone (1%) were found to be the best carbon and nitrogen sources, respectively, for use in antibiotic production. An antibiotic compound, designated as DG4, was separated and purified from ethyl acetate extract of the culture broth of isolate C9. On the basis of spectral data, including proton nuclear magneric resonance ($^1H$ NMR), carbon nuclear magneric resonance ($^{13}C$ NMR), and mass analyses, its chemical structure was established as a stereoisomer of acetylbutanediol. Application of the ethyl acetate extract of isolate C9 to several plant pathogens resulted in dose-dependent inhibition. Treatment with the purified compound (an isomer of acetylbuanediol) resulted in significantly inhibited growth of tested pathogens. The cell free culture supernatant of isolate C9 showed a chitinase effect on chitin medium. Results from the present study demonstrated the significant potential of the purified compound from isolate C9 for use as a biocontrol agent as well as a plant growth promoter with the ability to trigger induced systemic resistance of plants.

Localization of 5,105 Hanwoo (Korean Cattle) BAC Clones on Bovine Chromosomes by the Analysis of BAC End Sequences (BESs) Involving 21,024 Clones

  • Choi, Jae Min;Chae, Sung-Hwa;Kang, Se Won;Choi, Dong-Sik;Lee, Yong Seok;Park, Hong-Seog;Yeo, Jung-Sou;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1636-1650
    • /
    • 2007
  • As an initial step toward a better understanding of the genome structure of Korean cattle (Hanwoo breed) and initiation of the framework for genomic research in this bovine, the bacterial artificial chromosome (BAC) end sequencing of 21,024 clones was recently completed. Among these clones, BAC End Sequences (BESs) of 20,158 clones with high quality sequences (Phred score ${\geq}20$, average BES equaled 620 bp and totaled 23,585,814 bp), after editing sequencing results by eliminating vector sequences, were used initially to compare sequence homology with the known bovine chromosomal DNA sequence by using BLASTN analysis. Blast analysis of the BESs against the NCBI Genome database for Bos taurus (Build 2.1) indicated that the BESs from 13,201 clones matched bovine contig sequences with significant blast hits (E<$e^{-40}$), including 7,075 single-end hits and 6,126 paired-end hits. Finally, a total of 5,105 clones of the Korean cattle BAC clones with paired-end hits, including 4,053 clones from the primary analysis and 1,052 clones from the secondary analysis, were mapped to the bovine chromosome with very high accuracy.

Investigating Survival of Erwinia amylovora from Fire Blight-Diseased Apple and Pear Trees Buried in Soil as Control Measure (토양에 매몰 방제된 화상병 감염 사과와 배 나무로부터 화상병균 생존 조사)

  • Kim, Ye Eun;Kim, Jun Young;Noh, Hyeong Jin;Lee, Dong Hyeung;Kim, Su San;Kim, Seong Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.269-272
    • /
    • 2019
  • BACKGROUND: Since 2015, fire blight disease caused by Erwinia amylovora has been devastating apple and pear orchards every year. To quickly block the disease spreading, infected apple and pear trees have been buried in soil. However, concern on the possibility of the pathogen survival urgently requires informative data on the buried host plants. Therefore, this study was conducted to investigate the survival of the pathogen from the buried host plants. METHODS AND RESULTS: Apple trees buried in 42 months ago in a Jecheon site and pear trees buried in 30 months ago in an Anseong site were excavated using an excavator. Plant samples were taken from stems and twigs of the excavated trees. The collected 120 samples were checked for rotting and used for bacterial isolation, using TSA, R2A, and E. amylovora selection media. The purely isolated bacteria were identified based on colony morphology and 16S rDNA sequences. Wood rotting and decay with off smells and discoloring were observed from the samples. A total of 17 genera and 48 species of bacteria were identified but E. amylovora was not detected. CONCLUSION: Our investigation suggests that the survival of E. amylovora doesn't seem possible in the infected hosts which have been buried in soil for at least 30 months. Therefore, the burial control can be considered as a safe method for fire blight disease.

The Molecular Profiling of a Teleostan Counterpart of Follistatin, Identified from Rock Bream Oplegnathus fasciatus which Reveals its Transcriptional Responses against Pathogenic Stress

  • Herath, H.M.L.P.B;Priyathilaka, Thanthrige Thiunuwan;Elvitigala, Don Anushka Sandaruwan;Umasuthan, Navaneethaiyer;Lee, Jehee
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.273-281
    • /
    • 2015
  • The follistatin (FST) gene encodes a monomeric glycoprotein that plays a role in binding and inhibiting the functions of members of the transforming growth factor (TGF)-${\beta}$ superfamily. Thus, FST facilitates a wide variety of functions, ranging from muscle growth, to inflammation and immunity. In this study, we sought to characterize an FST counterpart, RbFST, which was identified from rock bream Oplegnathus fasciatus. The RbFST cDNA sequence (2,419 bp) contains a 933-bp open reading frame (ORF) that encodes a putative amino acid sequence for RbFST (35 kDa). The putative amino acid sequence contains a Kazal-type serine protease inhibitor domain (51-98 residues) and an EF-hand, calcium-binding domain (191-226 residues). Additionally, this sequence shares a high identity (98.7%) with the Siniperca chuatsi FST sequence, with which it also has the closest evolutionary relationship according to a phylogenetic study. Omnipresent distribution of RbFST transcripts were detected in the gill, liver, spleen, head kidney, kidney, skin, muscle, heart, brain, and intestine of healthy animals, with significantly higher expression levels in the heart, followed by the liver tissue. Under pathogenic stress caused by two bacterial pathogens, Streptococcus iniae and Edwardsiella tarda, RbFST transcription was found to be significantly up-regulated. Altogether, our findings suggest the putative role of RbFST in immune related responses against pathogenic infections, further prefiguring its significance in rock bream physiology.

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Gut-residing Microbes Alter the Host Susceptibility to Autoantibody-mediated Arthritis

  • Lee, Hyerim;Jin, Bo-Eun;Jang, Eunkyeong;Lee, A Reum;Han, Dong Soo;Kim, Ho-Youn;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • K/BxN serum can transfer arthritis to normal mice owing to the abundant autoantibodies it contains, which trigger innate inflammatory cascades in joints. Little is known about whether gut-residing microbes affect host susceptibility to autoantibody-mediated arthritis. To address this, we fed C57BL/6 mice with water containing a mixture of antibiotics (ampicillin, vancomycin, neomycin, and metronidazol) for 2 weeks and then injected them with K/BxN serum. Antibiotic treatment significantly reduced the amount of bacterial genomic DNA isolated from fecal samples, in particular a gene encoding 16S ribosomal RNA derived from segmented filamentous bacteria. Arthritic signs, as indicated by the arthritic index and ankle thickness, were significantly attenuated in antibiotic-treated mice compared with untreated controls. Peyer's patches and mesenteric lymph nodes from antibiotic-treated mice contained fewer IL-17-expressing cells than those from untreated mice. Antibiotic treatment reduced serum C3 deposition in vitro via the alternative complement pathway. IL-$17^{-/-}$ congenic C57BL/6 mice were less susceptible to K/BxN serum-transferred arthritis than their wild-type littermates, but were still responsive to treatment with antibiotics. These results suggest that gut-residing microbes, including segmented filamentous bacteria, induce IL-17 production in GALT and complement activation via the alternative complement pathway, which cause the host to be more susceptible to autoantibody-mediated arthritis.

Toll-like Receptor 4 Polymorphism and Periodontitis in Korean Population

  • Park, Ok-Jin;Shin, Seung-Yun;Chung, Chong-Pyoung;Ku, Young;Choi, Young-Nim;Kim, Kack-Kyun
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The primary cause of periodontitis is plaque-associated anaerobic gram-negative bacteria. As shown in the patients with defects in the number or function of neutrophils, innate immunity plays an important role in resistance to bacterial infection and periodontitis. Toll-like receptor 4(TLR4) is one of the key receptors that recognize the molecular patterns of microbes and initiate innate immune response. To understand the role of TLR4 in the pathogenesis of periodontitis, we investigated whether Asp299Gly of TLR4 mutation is associated with periodontitis in Korean population. Subjects for this study included 90 healthy subjects and 98 periodontitis patients. The Asp299Gly mutation was screened by PCR-Restriction Fragment Length Polymorphism(RFLP) of genomic DNA from blood cells using a primer that creates a NcoI restriction site only in the mutant allele. The Asp299Gly mutation was not found in all subjects tested. Our results suggest that the Asp299Gly mutation of TLR4 is very rare in a Korean population. Further mutation screening may be required to determine the role of TLR4 in the pathogenesis of periodontitis.

Molecular Characterization of a thiJ-like Gene in Chinese Cabbage

  • Oh, Kyung-Jin;Park, Yong-Soon;Lee, Kyung-Ah;Chung, Yong-Je;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene encoding a protein of 392 amino acids contained a tandem array of two thiJ-like sequences. ThiJ is a thiamin biosynthesis enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine (HMP) to HMP monophosphate. Although the cabbage gene shows a similarity to bacterial thiJ genes, it also shares a similarity with the human DJ-1, a multifunctional protein that is involved in transcription regulation, male fertility, and parkinsonism. The cabbage thiJ-like gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, which elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the cabbage thiJ-like gene expression is also strongly induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. Examination of the tissue-specific expression revealed that the induction of the cabbage gene expression by BTH occurs in the leaf, stem, and floral tissues but not in the root.

Identification of hrcC, hrpF, and maA Genes of Xanthomonas campestris pv. glycines 8ra: Roles in Pathogenicity and Inducing Hypersensitive Response on Nonhost Plants

  • Park, Byoung-Keun;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • Nonpathogenic mutants of Xanthomonas campestris pv. glycines were generated with Omegon-Kim to isolate genes essential for pathogenicity and inducing hypersensitive response (HR). Three nonpathogenic multants and two mutants showing slow symptom development were isolated among 1,000 colonies tested. From two nonpathogenic mutants, 8-13 and 26-13, genes homologous to hrcC and hrpF of X. campestris pv. vesicatoria were identified. The nonpathogenic mutant 8-13 had a mutation in a gene homologous to hrpF of X. campestris pv. vesicatoria and failed to cause HR on pepper plants but still induced HR on tomato leaves. The nonpathogenic mutant 26-13 had an insertional mutation in a gene homologous to hrcC of X. campestris pv. vesicatoria and lost the ability to induce HR on pepper leaves but still caused HR on tomato plants. Unlike other phytopathogenic bacteria, the parent strain and these two mutants of X. campestris pv. glycines did not cause HR on tobacco plants. a cosmid clone, pBL1, that complemented the phenotypes of 8-13 was isolated. From the analysis of restriction enzyme mapping and deletion analyses of pBL1, a 9.0-kb Eco RI fragment restored the phenotypes of 8-13. pBL1 failed to complement the phenotypes of 26-13, indicating that the hrcC gene resides outside of the insert DNA of pBL1. One nonpathogenic mutant, 13-33, had a mutation in a gene homologous to a miaA gene encoding tRNA delta (2)-isopentenylpyrophosphate transferase of Escherichia coli. This indicated that tRNA modifications in X. campestris pv. glycines may be required for expression of genes necessary for pathogenicity. The mutant 13-33 multiplied as well as the parent strain did in the culture medium and in planta, indicating that loss of pathogenicity is not due to the inability of multiplication in vivo.

  • PDF

Development of a Rapid Detection Method for Pectobacterium carotovorum subsp. carotovorum Using the Loop-Mediated Isothermal Amplification (LAMP) (Loop-Mediated Isothermal Amplification (LAMP)법을 이용한 Pectobacterium carotovorum subsp. carotovorum의 신속 진단법 개발)

  • Kim, Jeong-Gu;No, Ji-Na;Park, Dong-Suk;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Pectobacterium carotovorum subsp. carotovorum is the causative agent of soft rot in crops such as potato and cabbages. Loop-mediated isothermal amplification (LAMP) is a simple DNA amplification method, as well as isothermal PCR technique. In this study, a new method for the rapid detection of Pectobacterium carotovorum subsp. carotovorum was developed using LAMP that named PCC-LAMP. Based on lytic murein transglycolase gene of Pectobacterium carotovorum subsp. carotovorum, a set of four primers for LAMP was designed. The optimal PCC-LAMP reaction temperature was established at $61^{\circ}C$. Under standard conditions, PCC-LAMP amplified $1{\times}10^3$ copies of clone PCC-pBX437 per reaction. Further, this method can also assay directly by SYBR Green I without electrophoresis. Amplification was not detected for five other bacterial species. In conclusion, PCC-LAMP may be a useful method for the detection Pectobacterium carotovorum subsp. carotovorum in the field.