• Title/Summary/Keyword: Bacterial Community

Search Result 678, Processing Time 0.03 seconds

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Investigation of Variation in Bacterial Community Structure in Endangered Korean Fir Tree by Habitats (멸종위기종 구상나무 서식지별 세균 군집 구조 변이 조사)

  • Young Min Ko;Geun-Hye Gang;Dae Ho Jung;Youn-Sig Kwak
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • The Korean fir tree (Abies koreana), an endemic species of South Korea, is experiencing a severe decline in population due to climate change. Studies on the conservation of Korean fir have been extensive, yet research regarding its correlation with rhizosphere bacterial communities remains scarce, warranting further investigation. In this study, metagenome amplicon sequencing targeting the 16S rRNA V4 region was conducted to examine the presence of specific bacterial communities in Korean fir and to investigate potential differences based on habitat types (rhizosphere of native or cultivated trees, soil of dead trees, and bulk soil) and seasonal variations (April, June, September, November). Here we show that although we could not identify specific taxa highly specifically with Korean fir, the rhizosphere bacterial community in native trees exhibited less variability in response to seasonal changes compared to that in bulk soils. Suggesting the establishment of relatively stable bacterial populations around the Korean fir natural habitat. Further research on other types of rhizosphere and/or microbes is necessary to investigate the distinct relationship of Korean fir with microbial communities.

Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen

  • Do, Thi Huyen;Dao, Trong Khoa;Nguyen, Khanh Hoang Viet;Le, Ngoc Giang;Nguyen, Thi Mai Phuong;Le, Tung Lam;Phung, Thu Nguyet;Straalen, Nico M. van;Roelofs, Dick;Truong, Nam Hai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.738-747
    • /
    • 2018
  • Objective: In a previous study, analysis of Illumina sequenced metagenomic DNA data of bacteria in Vietnamese goats' rumen showed a high diversity of putative lignocellulolytic genes. In this study, taxonomy speculation of microbial community and lignocellulolytic bacteria population in the rumen was conducted to elucidate a role of bacterial structure for effective degradation of plant materials. Methods: The metagenomic data had been subjected into Basic Local Alignment Search Tool (BLASTX) algorithm and the National Center for Biotechnology Information non-redundant sequence database. Here the BLASTX hits were further processed by the Metagenome Analyzer program to statistically analyze the abundance of taxa. Results: Microbial community in the rumen is defined by dominance of Bacteroidetes compared to Firmicutes. The ratio of Firmicutes versus Bacteroidetes was 0.36:1. An abundance of Synergistetes was uniquely identified in the goat microbiome may be formed by host genotype. With regard to bacterial lignocellulose degraders, the ratio of lignocellulolytic genes affiliated with Firmicutes compared to the genes linked to Bacteroidetes was 0.11:1, in which the genes encoding putative hemicellulases, carbohydrate esterases, polysaccharide lyases originated from Bacteroidetes were 14 to 20 times higher than from Firmicutes. Firmicutes seem to possess more cellulose hydrolysis capacity showing a Firmicutes/Bacteroidetes ratio of 0.35:1. Analysis of lignocellulolytic potential degraders shows that four species belonged to Bacteroidetes phylum, while two species belonged to Firmicutes phylum harbouring at least 12 different catalytic domains for all lignocellulose pretreatment, cellulose, as well as hemicellulose saccharification. Conclusion: Based on these findings, we speculate that increasing the members of Bacteroidetes to keep a low ratio of Firmicutes versus Bacteroidetes in goat rumen has resulted most likely in an increased lignocellulose digestion.