• Title/Summary/Keyword: Bacteria

Search Result 13,058, Processing Time 0.039 seconds

Verification of Calcium Carbonate by Cementation of Silt and Sand Using Bacteria (Bacteria를 이용한 실트와 모래의 고결화에 따른 탄산칼슘 확인)

  • Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.53-61
    • /
    • 2012
  • The purpose of this study is to understand the mechanism of cementation of soil induced by bacteria. In order to understand the mechanism of cementation of soft soils treated with bacteria, six types of specimens(Not treated, Normal concentration bacteria treatment, High concentration bacteria treatment, Supernatant high concentration bacteria treatment, Double high concentration bacteria treatment, and 25% Specimen high concentration bacteria treatment) were made. Scanning Electron Microscope (SEM), EDX and X-ray diffraction (XRD) analyses were performed on the soft silt and loose sand specimens. Compared with the normal bacteria concentration treated specimen, a clearer cementation between particles was observed in the 25% specimen high bacteria concentration treated specimen. On the basis of the preliminary results, it appears that microbial cementation can occur in the soft soil.

Fluorescent detection of bacteria associated with gingival sulcus epithelium (DNA 형광 염색을 이용한 치은열구상피부착 세균에 관한 연구)

  • Shin, Seung-Yun;Lee, Sang-Hyun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.639-644
    • /
    • 2008
  • Purpose: The aim of this study was to compare the number of live and dead bacteria attached to, or within, the stratified squamous epithelium lining the tissue side of the gingival sulcus. Materials and Methods: A total of 50 patients was examined and classified into healthy or diseased sites according to inflammatory status of the gingival tissue. The surface of stratified squamous epithelium was removed by gentle scraping of the gingival sulcus with curettes. The cells were processed in the laboratory by density-gradient centrifugation to separate the epithelial cells from the loose bacteria and debris. The LIVE/$DEAD^{(R)}$ $BacLight^{TM}$ Bacterial Viability Kit was applied and the specimens were observed by an epifluorescent microscope and the number of bacteria was counted. Results: Live and dead bacteria were stained to green and red, irrespectively. Generally, the number of total bacteria in the diseased sites was significantly higher than in the healthy sites. The mean number of detected bacteria in the diseased sites was $58.6{\pm}36.0$ (red bacteria $10.4{\pm}9.2$ / green bacteria $48.2{\pm}30.5$), while it was $1.5{\pm}1.7$ in the healthy sites (red bacteria $0.1{\pm}0.3$ / green bacteria $1.4{\pm}1.5$). The percentage of red bacteria was $17.5{\pm}11.2%$ in the diseased sites and $2.0{\pm}5.8%$ in the healthy sites. Conclusion: The total number of bacteria in the diseased sites was significantly higher than that of the healthy sites. The ratio and the number of red bacteria were also significantly higher in the diseased sites.

Inhibition of Clinical Nosocomial Bacteria by Chlorine Dioxide

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.431-435
    • /
    • 2019
  • Chlorine dioxide is an effective chemical to inhibit the growth of bacteria and viruses or to disinfect infected areas. In this study, the effects of chlorine dioxide on several bacteria in hospitals were analyzed. Alloiococcus otitis, Kocuria rosea, Leuconostoc mesenteroides spp. and Staphylococcus lentus as gram-positive bacteria and Acinetobacter lwoffii, Aeromonas salmonicida, Brucella melitensis, Oligella ureolytica as gram-negative bacteria were done for the inhibitory analysis. The growth and morphology of the bacteria were analyzed by placing a plastic stick which was called "FarmeTok (medistick/Puristic)" provided by Purgofarm, co, Ltd. to release ClO2 (13 ppmv/hr) next to the plate where the bacteria were incubated for 24 hours. Less than 10 bacterial colonies were evaluated as having 99% inhibitory effect. The initial bacterial culture concentration of 0.5 McFaland turbidity was good for analyzing the chlorine dioxide inhibitory effect. All bacteria could be easily counted post 24 hr co-incubation with ClO2, but A. otitis and A. lwoffii without ClO2 gas were not countable due to very dispersed colony types which were not affected for result analysis. As shown in this study, the FarmeTok plastic stick, which discharges chlorine dioxide at 13 ppmv / hour, was evaluated to be sufficient to suppress the above bacteria in the hospital. Bacteria existing in the clinic such as this hospital will be used as a data to inhibit the growth of bacteria by using ClO2, and molecular biology analysis using the gene of bacteria will be possible in the future rather than inhibiting the growth of bacteria itself.

Antimutagenic Activities of Cell Wall and Cytosol Fractions of Lactic Acid Bacteria Isolated from Kimchi

  • Park, Kun-Young;Kim, So-Hee;Son, Tae-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.329-333
    • /
    • 1998
  • Cell wall (lactic acid bacteria-sonicated precipitate ; LAB-SP) and cytosoll(lactic acid bacteria-sonicated supernatant ; LAB-SS) fractions were prepared from kimchi fermenting lactic acid bacteria such as Leuconostoc mesenteroides, Lactobacillus brevis, Lactobacillus fermentum , Lactobacillus plantarum and Pediococcus acidilactici, with Lactobacillus acidophillus isolated from yogurt. Using the Ames mutagenicity test and SOS chormotest system, the antimutagenic acitivity of those cell fractions was studied . One hundered eighty $\mu$l of LAB-SP from lactic acid bacteria isolated from kimchi, excepting Pediococcus acidilactici, supressed the mutagenicity of 4-nitroquinoline-1-oxide(4-NQO) in Ames mutagenicity test and SOS chromotes system , by above 90% and 60% , respectively. LAB-SP from lactic acid bacteria also inhibited the mutagenicity mediated by 3-amino-1-methyl-5H-pyrido [4,3-b]indole (Trp-P-2). Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus acidphillus had higher antimutagenicity against Trp-P-2). Lactobacillus fermentum , Lactobacillus plantarum , and Lactobacillus acidphillus had higher antimutagenicity against Trp-P-2 than the other lactic acid bacteria. However, LAB-SS of lactic acid bacteria did not show any mutagenic activity against 4-NQO in Ames mutagenicity test and SOS chromotest systems. On the mutagenicity of MEIQ and Trp-P-2 , LAB-SS of lactic acid bacteria from kimchi or dairy products exhibited a weaker inhibitory effect than LAB-SP of those bacteria. These results represent that, whether the lactic acid bacteria from kimchi are viable or nonviable, antimutagenic acitivity was still effective. We suggest that the strong, antimutaganic activity of lactic acid bacteria might be found in the cell wall fraction , rather than in the cytosol fraction.

  • PDF

Study on Antibiotic Resistant Bacteria in Surface Water Receiving Pharmaceutical Complex Effluent (제약공단 방류수 유입 하천에서의 항생제 내성 bacteria에 관한 연구)

  • Kim, Young Jin;Kim, Young Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.409-418
    • /
    • 2016
  • Objectives: The purpose of this study was to characterize penicillin G resistant bacteria in surface water from pharmaceutical complex effluent. Methods: Surface water was sampled from pharmaceutical complex effluent in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant bacteria were selected from the effluent and subjected to 16S rRNA analysis for the penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant bacteria were present at 8.0% in terms of culturable heterotrophic bacteria. Identified penicillin G resistant bacteria exhibited resistance to more than nine of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the surface water of pharmaceutical complex effluent suggest the need for disinfection and advanced oxidation processed for pharmaceutical effluent.

Detection of Microbial Contamination in Commercial Berries

  • Cho, Kyu-Bong
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.333-338
    • /
    • 2017
  • This study was performed to assess microbial contamination of Aronia melanocarpa, blueberry, raspberry, and cranberry sold in several markets. We investigated total aerobic bacteria and detected foodborne bacteria by multiplex PCR from Aronia melanocarpa, blueberry, raspberry, and cranberry. Total aerobic bacteria of each sample showed mean 3.54 log CFU/g for Aronia melanocarpa, mean 1.90 log CFU/g for blueberry, and mean 1.40 log CFU/g for raspberry, but not detected in cranberry. Specially, Aronia melanocarpa contained high total aerobic bacteria contamination among various berries and contamination level reached 4.17 log CFU/g in sample 5. To evaluate the effect of distribution conditions, we also investigated total aerobic bacteria of various berries. Total aerobic bacteria showed mean 2.89 log CFU/g for berries in refrigerated distribution and 1.40 log CFU/g in frozen distribution, but not in dry distribution. For assessment of foodborne bacteria contamination, we conducted PCR with multiplex primers of E. coli O157, S. aureus, B. cereus, V. parahaemolyticus, L. monocytogenes, Y. enterocolitica, Salmonella spp., Shigella spp. Among these foodborne bacteria, B. cereus was amplified in Aronia melanocarpa in sample 4 and blueberry in sample 1, 2, 3, and 5. The result of quantitative analysis of B. cereus contamination showed 4.08 log CFU/g of Aronia melanocarpa in sample 4 and higher contamination rate 4.07 log CFU/g of blueberry in sample 3. These results suggest that strict food safety control in harvest and distribution of various berries is necessary to prevent foodborne disease and improve microbiological safety.

Inhibitory effects of Kimchi lactic acid bacteria on harmful enzymes of human intestinal bacteria

  • Han, Seung-Bae;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.226.3-227
    • /
    • 2003
  • Lactic acid bacteria have been considered as the most beneficial probiotic organisms contributing to inhibition of harmful and putrefactive intestinal bacteria. Among them, Bifidobacterium spp. has been considered as one of the most beneficial probiotic organism that can improve the health of humans, since it is one of the major bacteria flora in human intestine. However, the harmful enzyme-inhibitory activity of lactic acid bacteria of Kimchi, which is a representative Korean fermented food has not been evaluated. (omitted)

  • PDF

Effect of Lentinus edodes on the Growth of Intestinal Lactic Acid Bacteria

  • Bae, Eun-Ah;Kim, Dong-Hyun;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.443-447
    • /
    • 1997
  • As the growth factor of lactic acid bacteria, LD (trehalose) was isolated from Lentinus edode5 by using silica gel column chromatography. LD induced the growth of Bifidobacteria breve and Lactobacillus brevis, which were isolated from human feces. LD selectively induced the growth of lactic acid bacteria among total microflora. When total intestinal microflora were cultured in the medium containing LD, it stimulated the growth of lactic acid bacteria and inhibited harmful enzymes, ${\beta}$-glucosidase, ${\beta}$-glucuronidase, and tryptophanase, of intestinal bacteria. LM, which was a monosaccharide from L. edooles, induced the growth of lactic acid bacteria but it seems to be invaluable in vivo. LH isolated from L. edodes by Sephadex G-100 column chromatography was not effective for the growth of lactic acid bacteria.

  • PDF

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -1. Enumeration of aerobic heterotrophic bacteria associated in histosphere of grasses and rice (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第)1보(報) 수도(水稻) 및 자연생잡초(自然生雜草) 근조직내(根組織內) 협생질소고정균(協生窒素固定菌)의 분리동정(分離同定))

  • Lee, Sang Kyu;Suh, Jang Sun;Ko, Jae Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 1987
  • The aerobic heterotrophic bacteria in the histosphere associated with grasses (Gramineae, Caryphyllaceae, Crucifereae) and rice cultivars in saline and reclaimed saline paddy soils were varied with species and rice cultivars. The fraction of aerobic heterotrophic $N_2$-fixing bacteria to the total aerobic heterotrophic bacteria were averaged to eighteen percent in the histosphere of grasses and rice. Acetylene reducing activity of these bacteria were ranged from 1 to 24 n mole/tube/hr. Most of the bacteria strains were predominated of hydrogen utilizing bacteria. The majority of these bacteria were closed to Pseudomonas, Azospirillum, Klebsiella and Agrobacter.

  • PDF

Changes of Nitrifying Bacteria in the Different Zone (Upper·Mid·Lower Part) of the Nak-Dong River (낙동강 상·중·하 수역에서의 질화세균군의 변화)

  • Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.214-220
    • /
    • 2008
  • Nitrifying bacteria were detected by fluorescent in situ hybridization (FISH) method at 6 sampling sites with different eutrophication degree in the Nak-Dong River and their tributaries. And conventional physico-chemical parameters including $NH_4-N$, $NO_3-N$, and TN were determined concurrently. In rainy period (July), there was no noticeable difference between the number of ammonia/nitrite-oxidizing bacteria detected at each site except Sang-Ju and the ratio of nitrifying bacteria to total counts stained by DAPI varied in 6~33%. By contrast, in the dry period (October), both of bacterial population was increased differently and the ratio of nitrifying bacteria to total counts ranged more widely from 6% in heavily polluted water zone, Hwa-Won to 60% in upper tributary with high agricultural land use. Byung-Sung-Chun. In January, the numbers of ammonia-oxidizing bacteria was reduced up to one tenth, while those of nitrite-oxidizing bacteria was apparently increased maybe due to high DO and low DOC.