• Title/Summary/Keyword: Bacmid

Search Result 9, Processing Time 0.028 seconds

Rapid Expression of Bm46 in Bombyx mori Cell Lines, Larvae and Pupae

  • Wang, Haiyan;Chen, Keping;Guo, Zhongjian;Yao, Qin;Wang, Qiang;Mu, Runhong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.35-38
    • /
    • 2007
  • In this study, ORF 46 of Bombyx mod nucleopolyhedrovirus(Bm46) fused with EGFP was expressed in Bombyx mod cell lines, larvae and pupae by BmNPV Bacmid system. Bm46 and EGFP were cloned into donor plasmid pFastBacHTb, which was transformed to competent DH10B cells containing helper and BmNPV bacmid by site-specific transposition. Recombinant bacmid was used to transfected BmN-4 cells to produce the recombinant baculovirus vBm-Bm46-EGFP. Recombination virus was injected into silkworm larvae and pupae. The expression of the fusion protein was monitored by examining green fluorescence using a fluorescent microscope. Intense fluorescence in cells and silkworm was observed at 4 days post-infection, indicating the Bm46-EGFP fusion gene was expressed successfully.

Bombyx mori Nucleopolyhedrovirus Bacmid Enabling Rapid Generation of Recombinant Virus by In Vitro Transposition

  • Tao, Xue Ying;Choi, Jae Young;Kim, Yang-Su;Lee, Seok Hee;An, Saes Byeol;Pang, Ying;Kim, Jong Hoon;Kim, Woo Jin;Je, Yeon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.386-392
    • /
    • 2015
  • A novel recombinant bacmid, bEasyBm, that enables the easy and fast generation of pure recombinant baculovirus without any purification step was constructed. In bEasyBm, attR recombination sites were introduced to facilitate the generation of a recombinant viral genome by in vitro transposition. Moreover, the extracellular RNase gene from Bacillus amyloliquefaciens, barnase, was expressed under the control of the Cotesia plutellae bracovirus early promoter to negatively select against the nonrecombinant background. The bEasyBm bacmid could only replicate in host insect cells when the barnase gene was replaced with the gene of interest by in vitro transposition. When bEasyBm was transposed with pDualBac-EGFP, the resulting recombinant virus, EasyBm-EGFP, showed high levels of EGFP expression efficiency compared with that of non-purified recombinant virus BmGOZA-EGFP, which was constructed using the bBmGOZA system. In addition, nonrecombinant backgrounds were not detected in unpurified EasyBm-EGFP stocks. Based on these results, a high-throughput system for the generation of multiple recombinant viruses at a time was established.

Expression of Bombyx mori Nucleopolyhedrovirus ORF4 under the Control of BaculoviruS Ie1 Promoter by a Novel Bac-to-Bac/BmNPV Baculovirus Expression System

  • Su, Wujie;Wu, Yan;Wu, Huiling;Wang, Wenbing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • Open reading frame 4 of Bombyx mori nucleopolyhedrovirus (BmNPV), designated as Bm4, is a gene whose function is completely unknown. With the recently developed BmNPV bacmid and a modified pFastBac1 whose polyhedrin promoter was replaced with ie1 promoter, a recombinant bacmid expressing Bm4-EGFP fusion protein under the control of ie1 promoter in BmN cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced efficiently with other promoters to direct the expression of foreign gene in BmN cells by using Bac-to-Bac/BmNPV baculovirus expression system but also laid the foundation for rescue experiment of Bm4 deletion mutant due to the ability of ie1 promoter to direct gene expression throughout the infection cycle.

Construction of a Transposon-mediated Baculovirus Vector Hanpvid and a New Cell Line for Expressing Barnase

  • Qin, Qin;Liu, Ying-Le;Zhu, Ying;Li, Shun-Yi;Qi, Yi-Peng
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this study we developed the transposon-mediated shuttle vector 'Hanpvid', which composed of HaNPV (Heliothis armigera nuclear polyhedrosis virus) genomic DNA and a transposon cassette from Bacmid of Bac-to-Bac system. Hanpvid replicates in E. coli in the same way as Bacmid and retains infective function in cotton bollworm cells (Hz-AM1). Using Hanpvid we constructed a recombinant virus, which could infect Hz-AM1 cells and generate recombinant HaNPV (rHa-Bar) containing the barnase gene, a ribonuclease gene from Bacillus amyloliquefaciens. Since the expression vector carrying barnase gene cannot replicate in the absence of barstar, a specific inhibitor of barnase, we constructed a new cotton bollworm cell line (AM1-NB) using the marker rescue method. In AM1-NB barstar was integrated into the cellular chromosome to sustain the replication of rHa-Bar. To screen out recombinant HaNPV for potential use as biopesticide, Hz-AM1 and AM1-NB cell lines were infected with rHa-Bar, respectively. The results obtained indicate that Viral progenies in AM1-NB were 23 and 160 times greater than those in Hz-AM1 48 h and 72 h after infection, respectively. With additional insertion of the polyhedron gene from AcNPV (Autographa californica nuclear polyhedrosis virus) into the Hanpvid genome, rHa-Bar regained the polyhedron phenotype and its pest-killing rate greatly improved. Toxic analysis showed that the lethal dosages ($LD_{50}$) and the lethal time(s) ($LT_{50}$) of rHa-Bar were reduced by 20% and 30%, respectively, compared to wt-HaNPV in the third instar larvae of cotton bollworm. This study shows that in AM1-NB barnase can be effectively produced and used as pest-killing agent for the biological control of cotton pests.

Establishment of Baculovirus Infected Insect Cell Line Expressing Porcine Salivary Lipocalin(SAL1) Protein

  • Seo, Hee-Won;Park, Da-Young;Kim, Min-Goo;Ahn, Mi-Hyun;Ko, Ki-Narm;Ko, Ki-Sung;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • Salivary lipocalin (SAL1) is a member of the lipocalin protein family that has a property to associate with many lipophilic molecules. The importance of SAL1 during pregnancy in pigs has been suggested by our previous study which has shown that SAL1 is expressed in the uterine endometrium in a cell type- and implantation stage-specific manner and secreted into the uterine lumen. However, function of SAL1 in the uterus during pregnancy in pigs is not known. To understand SAL1 function in the uterus during pregnancy, we generated recombinant porcine SAL1 protein in an insect cell line. Porcine SAL1 cDNA was cloned into a baculovirus expression vector using RT-PCR and total RNA from uterine endometrium on day 12 of pregnancy, and the expression vector was used to generate recombinant Bacmid containing the SAL1 gene. The recombinant Bacmid was then transfected Sf9 cell to produce recombinant baculovirus. By infecting Sf9 cell with recombinant baculovirus, we established a SAL1-expressing insect cell expression system. Immunoblot analysis confirmed SAL1 expression in the infected cells. Recombinant SAL1 produced by the Sf9 cell line will be useful for understanding physiological function of SAL1 during pregnancy in pigs.

Insect Cell Surface Expression of Hemagglutinin (HA) of Egyptian H5N1 Avian Influenza Virus Under Transcriptional Control of Whispovirus Immediate Early-1 Promoter

  • Gadalla, M.R.;El-Deeb, A.H.;Emara, M.M.;Hussein, H.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1719-1727
    • /
    • 2014
  • In the present study, whispovirus immediate early 1 promoter (ie-1) was used to initiate surface expression of the hemagglutinin (HA) protein of Egyptian H5N1 avian influenza virus (AIV) by using the baculovirus expression vector system. The HA gene and whispovirus ie-1 promoter sequence were synthesized as a fused expression cassette (ie1-HA) and successfully cloned into the pFastBac-1 transfer vector. The recombinant vector was transformed into DH10Bac competent cells, and the recombinant bacmid was generated via site-specific transposition. The recombinant bacmid was used for transfection of Spodoptera frugiperda (Sf-9) insect cells to construct the recombinant baculovirus and to induce expression of the HA protein of H5N1 AIV. The recombinant glycoprotein expressed in Sf-9 cells showed hemadsorption activity. Hemagglutination activity was also detected in both extra- and intracellular recombinant HAs. Both the HA and hemadsorption activities were inhibited by reference polyclonal anti-H5 sera. Significant expression of the recombinant protein was observed on the surface of infected insect cells by using immunofluorescence. SDS-PAGE analysis of the expressed protein revealed the presence of a visually distinguishable band of ~63 kDa in size, which was absent in the non-infected cell control. Western blot analysis confirmed that the distinct 63 kDa band corresponded to the recombinant HA glycoprotein of H5N1 AIV. This study reports the successful expression of the HA protein of H5N1 AIV. The expressed protein was displayed on the plasma membrane of infected insect cells under the control of whispovirus ie-1 promoter by using the baculovirus expression vector system.

Generation of Baculovirus Expression Vector Using Detective Autographa California Nuclear Polyhedrosis Virus Genome Maintained in Escherichia coli for $Occ^{+}$ Virus Production

  • Je, Yeon-Ho;Chang, Jin-Hee;Roh, Jong-Yul;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.2
    • /
    • pp.155-160
    • /
    • 2001
  • We have generated a novel baculovirus genome which can be maintained in Escherichia coli that facilitates the rapid and efficient generation of recombinant baculovirus expression vectors. To make $Occ^{+}$ recombinant expression vectors, polyhedrin gene under the control of p10 promoter was inserted to bAcGOZA and this genome was designated bApGOZA. As in bAcGOZA, bApGOZA lacks a portion of the essential ORF1629 gene, but includes a mini-F replicon and selectable kanamycin-resistance marker, This occasion-producing activity of bApGOZA can be used very conveniently for its oral infectivity to insect larvae in mass production of foreign protein and insecticides.

  • PDF

Polyhedra Productions of Recombinant Autographa californica Nucle- opolyhedroyiruses Containing Additional Polyhedrin of Autographa Cali- fornica, Bombyx mori or Spodoptera exigua Nucleopolyhedrovirus

  • Chang, Jin-Hee;Roh, Jong-Yul;Jin, Byung-Rae;Je, Yeon-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • The role of polyhedrin in the polyhedra production in baculovirus Autograha californica Nucelopolyhedro-sisvirus (AcNPV) was studied by over-expression of AcNPV polyhedrin or heterologous polyhedrin from Bombyx mori (Bm) NPV or Spodoptera exigua (Se) NPV. The transfer vectors containing additional polyhedrin from AcNPV, BmNPV, or SeNPV were constructed and cotransfected with bacmid bApGOZA into Sf9 cells. The resulting recombinants, designated as vApAcPol, vApBmPol, and vApSePol were tonstructed, and the polyhedra production of the recombinant was characterized. All of the recombinants produced polyhedra in the nucleus, and the polyhedrin was over-expressed. Among three recombinants, vApAcPol and vApBmPol were discriminated by their larger polyhedra size than that of wild type AcNPV, and vApSePol also produced larger polyhedra than wild type SeNPV polyhedra.

  • PDF

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.