• Title/Summary/Keyword: Backwater effect

Search Result 39, Processing Time 0.023 seconds

An Experimental Study of Backwater Effects Caused by the Covered Reach of Urban Streams

  • Yoon, Yong-Nam;Ahn, Jae-Hyun;Kim, Jin-Kwan
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.19-30
    • /
    • 1997
  • The hydraulics of flow within the covered reach of urban streams is very complicated due to the accumulation and interference effect of eddies around the multipli piers supporting the covering slab. An extensive experimental study is done to quantitatively estimate the backwater rise effect caused by various arrays of multiple piers. The factors governing the backwater rise are found out to be the contraction ratio due to the piers. Foude number of the flow, longitudinal pier spacing, and the length of the covered reach. For a single section of lateral pier arralyzed and a multiple regression equation derived. The effect of multiple piers, arrayed in both lateral and longitudinal directions. on the backwater rise is analyzed in terms of the contraction ratio. Froude number, longitudinal pier spacing and the total length of the covered reach. A multiple regression equation for the backwater rise estimation is proposed based on the experimental data collected in this study.

  • PDF

An Experimental Study of Backwater Effects Caused by Piers in the Covered Reach of Urban Streams (都市河川 覆蓋區間내 橋脚으로 인한 背水影響의 實驗的 硏究)

  • Yoon, Yong-Nam;Ahn, Jae-Hyun;Kim, Jin-Kwan
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.143-152
    • /
    • 1996
  • The hydraulics of flow within the covered reach of urban streams is very complicated due to the accumulation and interference effect of eddies around the multiple piers supporting the covering slab. An extensive experimental study is done to quantitatively estimate the backwater rise effect caused by various arrays of multiple piers. The factors governing the backwater rise are found out to be the contraction ratio due to the piers, Froude number of the flow, longitudinal pier spacing, and the length of the covered reach. For a single section of lateral pier arrays the effect of contraction ratio and Froude number on the backwater rise is analyzed and a multiple regression equation is derived. The effect of multiple piers, arrayed in both lateral and longitudinal directions, on the backwater rise is analyzed in terms of the contraction ratio, Froude number,longitudinal pier spacing and the total length of the covered reach. A multiple regression equation for the backwater rise estimation is proposed based on the experimental data collected in the present study.

  • PDF

Analysis of Flood Stage in a Confluence using the Dynamic Numerical Model (동역학적 수치모형을 이용한 합류부 홍수위 분석)

  • Kim, Ji Sung;Kim, Keuk Soo;Kim, Won;Kim, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.453-461
    • /
    • 2009
  • In this study, a dynamic numerical model, FLDWAV, is used for analyzing the backwater effect of flood stage in YeongWeol station, which is located on the confluence upstream where Pyeongchang river joins Han river. Given various inflow discharges of both main stream and tributary, the feasible stage-discharge relationships at the YeongWeol station and the upstream range of the backwater effect were computed. The results show that the relationships are completely different according to each of the inflow discharges from tributary and the maximum difference of stage is about 4.0 m. Therefore, the development of a single relationship of stage and discharge is very difficult problem in the zone of backwater effect. The increase of stage in the junction due to the lateral inflow has an effect on upstream stage up to about 8.0 km. The well-calibrated and verified dynamic wave routing model will be a useful tool for the flood forecast in the zone of backwater effect rather than conventional hydrological routing model.

Development of a Real Time Control Model for Urban Drainage Systems (도시 내배수시스템 실시간 운영모형의 개발)

  • Jun, Hwandon;Lee, Yang Jae;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.748-755
    • /
    • 2007
  • To develop an efficient pump operating rule for a retard basin, it is necessary to estimate inflow to the retard basin accurately which is affected by the backwater effect at the outlet of the conduit. The magnitude of the backwater effect is dependent on the water depth of a retard basin; however, the depth is determined by the amount of inflow and outflow. Thus, a real time simulation system that is able to simulate urban runoff and the pump operation with the consideration of the backwater effect is required to estimate the actual inflow to a retard basin. With this system, the efficient pump operating rule can be developed to diminish the possible flood damage on urban areas. In this study, a realtime simulation system is developed using the SWMM 5.0 DLL and Visual Basic 6.0 equipped with EXCEL to estimate inflow considering the backwater effect. The realtime simulation can be done by updating realtime input data such as minutely observed rainfall and the depth of a retard basin. Using those updated input data, the model estimates actual inflow, the amount of outflow discharged by pumps and gates, the depth of each junction, and flow rate at a sewer pipe on realtime basis. The developed model was applied to the Joonggok retard basin and demonstrated that it can be used to design a sewer system and to estimate actual inflow through the inlet sewer to reduce the inundation risk. As results, we find that the model can contribute to establish better operating practices for the pumps and the flood drainage system.

Hydraulic Analysis Using a Two-Dimensional Model(II) : Bridge Backwater Analysis (2차원 모형을 이용한 수리해석(II) : 배수위 흐름해석)

  • Kim, Eung-seok;Lee, Seung-hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5716-5720
    • /
    • 2015
  • This study has analyzed the backwater effect by the bridge pier on the basis of the result on hydraulic characteristics with pier shapes in study(I), using a two-dimensional model(RMA-2) and an one-dimensional model(HEC-RAS). The pier shapes are classified into total six types such as square, rhombus, octagon, oval, round, and no-piers. The result of the backwater effect analysis showed that the backwater length is about 150 and 50m from HEC-RAS and RMA-2, respectively for all pier types. Although it is difficult to directly compare between results from the two models, the oval shape pier has shown similar results to the no-pier situation before the bridge construction in hydraulic characteristics. This analysis can help to select pier types in the new bridge construction for the future.

Analysis on the Hydraulic Effect due to Bridge and Culvert in the Stream (교량 및 암거의 수리영향 분석)

  • Lee, Jong-Seol;Chung, Jae-Hak;Kim, Soo-Jun;Lee, Ho-Yul
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.571-574
    • /
    • 2007
  • The purpose of this research is to analyze sensitivities on hydraulic characteristic factors of bridge and culvert causing flood water level rising. With HEC-RAS and RMA2 models, analysis of backwater due to bridge and culvert in an ideal stream was carried out. The results of hydraulic modeling and sensitivity analysis indicated that the opening ratio and the Froude number were the most sensitive factors and other factors were not quite sensitive to flood water level rising.

  • PDF

An Evaluation of River Discharge Estimates in a Junction with Backwater effect using Interpolated Hydraulic Performance Graph (HPG로 산정한 합류부 배수영향 구간의 유량 평가)

  • Kim, Ji-Sung;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.831-838
    • /
    • 2018
  • This paper presents a method to estimate the flow discharge in a backwater affected river junction. First, unsteady HEC-RAS model was simulated and calibrated using 2 recent real flood and then HPG (Hydraulic Performance Graph) was created by plotting the relationship between upstream and downstream stages and discharge in the reach and performing kriging interpolation. During a flood, the discharge through the reach can be estimated based on the stages at its ends and the developed HPG. These discharge data were in good agreement with the automatic discharge measurements such as ADVM. This study could provide an economical and practical method for estimating discharge in a junction with a high hysteresis of stage-discharge relationships.

Reservoir Routing in Estuary Lake Influenced by Tidal Effects (조석 영향을 받는 하구호에서의 저수지추적)

  • Kim, Joo-Young;Lee, Jong-Kyu;Yoon, Kwang-Seok;Kim, Han-Sup
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.722-725
    • /
    • 2007
  • Geum River Estuary Barrage is very important for the irrigation, municipal and industrial uses in the cities of Gunsan, Iksan and Jeonju. The Geum River Control Office has a flood forecasting system; however, the current system does not consider the backwater effects. As a result, it is very difficult to give correct flood information, and it is difficult to accurately assess the water resource supply and saltwater invasion into freshwater, as frequently occurs due to over-discharge during floods. In this study, we investigate the flood forecasting system for the Geum River reach influenced by the estuary barrage. The current system cannot consider the backwater effect because the estuary barrage blocks the end of the river. We calculated the discharge from the tide lock and evaluated the inside water level of the estuary barrage during floods. The results show that the calculation agrees well with the observed data at the river stage stations in the Geum River. The results also show that this program is a reasonable substitute for the current system.

  • PDF

Effect of Chungju Dam Operation for Flood Control in the Upper Han River (충주댐 방류에 따른 댐 상하류 홍수위 영향 분석)

  • Kim, Sang Ho;Kim, Ji-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.537-548
    • /
    • 2013
  • In this study, the hydraulic channel routing model was constructed to analysis the effect of flood control with the operation of Chungju Dam for 2006 flood. Study area was divided with up- and downstream of Chungju Dam in the upper Han River of Paldang Dam. The model was calibrated and verified for the flood event of 1995-2008. The effects of flood control of Chungju Dam were compared with the simulation results without the dam, and the rising effects of stage in the main observation stations were analyzed by the variation of released dam discharge. Consequently, the operation of Chungju Dam for 2006 flood was performed properly, but the effects of flood control of Chungju Dam were so focused in downstream of the dam that institutional complement was demanded to reduce the flood damage in the upper region of the dam. The limit of decision rule of downstream stage in the backwater region of dam was analyzed to solve the problem, and the decision rule of downstream stage was proposed to consider the discontinuity between the backwater region of dam and the design flood of upper stream. The proposed rule will be used to design the reduction of flood damage in upper stream of dam and to apply the analysis of region for flood damage.

Review of Backwater effect period of Gaging station located at the Confluence (합류부에 위치한 수위관측소의 배수영향 기간 검토)

  • Kang, Jong Wan;Lee, Tae Hee;Lee, Ki Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.380-380
    • /
    • 2021
  • 수위관측소에서는 일반적으로 실시간 수위관측을 통해 연속된 수위자료가 계측이 되고 있는 반면, 하천의 유량은 실시간 측정이 어렵기 때문에 목적에 따라 시기 또는 수위별로 측정을 실시하고 있다. 이를 통해 확보한 유량자료를 이용하여 수위-유량관계곡선(Stage-Discharge relationship)을 개발하고, 이 곡선을 이용하여 연속적인 유량자료를 제시하고 있다. 자연하천의 경우 하도의 인공적 및 자연적 변화에 따라 수위-유량관계가 변화하게 된다. 특히 합류부에 위치한 관측소는 일반적인 단일 하천에서의 수위-유량관계와 다르게 배수(Backwater)가 발생한다. 이는 등류수위의 경사보다 완경사가 발생하고 단순 수위-유량 일대일 관계를 나타내는데 어려움이 있다. 따라서 수위-유량관계곡선을 이용한 유량환산에 있어 배수 발생기간은 왜곡된 유량자료를 생산하거나 유량환산 불가기간이 발생하는 문제점이 있다. 미호천의 지류인 한천에 위치한 진천군(인산리) 관측소는 하류 약 500m에서 미호천 본류와 합류하고 있다. 또한 합류점을 기준으로 본류인 미호천 상류 약 3km에 진천군(가산교) 관측소, 하류 약 2km에 진천군(오갑교) 관측소가 위치하고 있다. 따라서 호우사상의 크기에 따라 본류 배수영향으로 진천군(인산리) 관측소 중고수위에서 수위-유량관계곡선으로 산정된 유량의 크기가 과대 산정되어 진천군(가산교)와 합산한 유량이 진천군(오갑교) 관측소 유량과 상하류 역전이 발생한다. 이러한 문제를 해결하기 위해 합류부 보조수위계 설치를 통해 배수영향을 검토 할 계획이었으나 2020년 큰 호우사상으로 보조수위계가 유실되어 본류에 위치한 진천군(가산교)와 진천군(오갑교) 관측소의 연속적인 수위, 유량, 유속 등 수리학적 인자를 이용하여 에너지 방정식으로부터 합류부 수위를 산정하고 지류인 한천의 배수영향 검토를 통해 진천군(인산리) 관측소의 배수 발생기간을 검토하였다. 따라서 수위-유량관계곡선을 이용한 유량환산에 있어서 배수에 의한 왜곡된 유량 자료를 제외하였으나 배수에 의한 유량환산 불가기간은 추후 해결해야 할 과제로 남는다.

  • PDF