• Title/Summary/Keyword: Backward Mode

Search Result 109, Processing Time 0.021 seconds

Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

  • Sung, Jin Woo;Kim, Young H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.270-275
    • /
    • 2013
  • In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

Design Study of a Dual-Mode Ramjet Engine with Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진의 설계 연구)

  • Yang, Inyoung;Lee, Yang-Ji;Lee, Kyung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.33-41
    • /
    • 2015
  • Scaled model of a dual-mode ramjet engine with large backward-facing step, as a component of the rocket-based combined cycle engine, was designed. Design parameters were derived for this engine with the consideration of application for the rocket-based combined cycle engine. Design methodology was established for these design parameters. The design was partially verified through numerical study. Flow characteristics of the dual-mode ramjet engine with large backward-facing step was investigated experimentally. The design methodology for relevant design parameters established in this study was verified as feasible.

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

Implementation of a High Power Backward Wave Oscillator on Electron Beam Diode Structure Improvement (전자빔 다이오드 구조개선에 의한 대전력 후진파발진기의 구현)

  • Kim, Won-Sop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.897-903
    • /
    • 2009
  • We have designed the backward wave oscillator. A power-pulsed generator oscillated at 24 GHz has higher frequency than current one. It is very inportant to prevent microwave from going into the beam diode, since intence microwave will harmfully affect beam generation. Due to the axial mode operation, there exist a critial value of beam energy for the oscillation. By changing the condition at the SWS end, an enhanced performance of the K-band oversized BWO is observed in a low magnetic field region about 0.8T.

Design Study of a Large Diameter Backward Wave Oscillator on Slow Wave Instability Analysis (지파 불안정성 해석에 의한 대구경 후진파발진기의 연구)

  • Kim, Won-Sop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • We have designed the backward wave oscillator operating at 24 GHz. From the research which sees researches in the goal which will design and will produce K-band BWO where is a backward wave oscillator which departs from cycle prisoner 24 GHz until now is higher. To design Chrencov instibility and branch of family used a slow cyclotron instibility. Calculation used a dispersion relation and in order for as the box over-flow not to happen, a asymtotic expansion. Used a beam mode and a waveguide mode and axial symmetry and expense used in compliance with sattle point interpreted the relationship of axial symmetry.

Channel Estimation Scheme for WLAN Systems with Backward Compatibility

  • Kim, Jee-Hoon;Yu, Hee-Jung;Lee, Sok-Kyu
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.450-453
    • /
    • 2012
  • IEEE 802.11n standards introduced a mixed-mode format frame structure to achieve higher throughput with multiple antennas while providing backward compatibility with legacy systems. Although multi-input multi-output channel estimation was possible only with high-throughput long training fields (HT-LTFs), the proposed scheme utilizes a legacy LTF as well as HT-LTFs in a decision feedback manner to improve the accuracy of the estimates. It was verified through theoretical analysis and simulations that the proposed scheme effectively enhances the mean square error performance.

Analysis of Receiving Performance for DVB-S2 Transmission System: BC Mode (DVB-S2 전송시스템의 수신성능 분석: BC 모드)

  • Do, Geun-Chang;Chang, Dae-Ig;Sohn, Won
    • Journal of Broadcast Engineering
    • /
    • v.12 no.1 s.34
    • /
    • pp.2-10
    • /
    • 2007
  • We analyzed the receiving performance of the DVB-S2 transmission system in the BC(Backward Compatibility) mode. The transmitter employs the hierarchical modulation, and the receiver can be implemented by the direct demodulation or the hierarchical demodulation. The performance of each demodulation scheme is analyzed by a statistical method and a computer simulation for the AWGN and nonlinear channels. The ratio of the LP/HP streams which is proper in the domestic satellite broadcasting environments, is also suggested.

Improved Bi-directional Symmetric Prediction Encoding Method for Enhanced Coding Efficiency of B Slices (B 슬라이스의 압축 효율 향상을 위한 개선된 양방향 대칭 예측 부호화 방법)

  • Jung, Bong-Soo;Won, Kwan-Hyun;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.14 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • A bi-directional symmetric prediction technique has been developed to improve coding efficiency of B-slice and to reduce the computational complexity required to estimate two motion vectors. On the contrary to the conventional bi-directional mode which encodes both forward and backward motion vectors, it only encodes a single forward motion vector, and the missing backward motion vector is derived in a symmetric way from the forward motion vector using temporal distance between forward/backward reference frames to and from the current B picture. Since the backward motion vector is derived from the forward motion vector, it can halve the computational complexity for motion estimation, and also reduces motion vector data to encode. This technique always derives the backward motion vector from the forward motion vector, however, there are cases when the forward motion vector is better to be derived from the backward motion vector especially in scene changes. In this paper, we generalize the idea of the symmetric coding with forward motion vector coding, and propose a new symmetric coding with backward motion vector coding and adaptive selection between the conventional symmetric mode and the proposed symmetric mode based on rate-distortion optimization.

Design of Tight Coupled 1/4 Wavelength Backward-Wave Directional Coupler using Coupled Lines with Finite Metallization Thickness (도체 두께를 가진 결합선로를 이용하여 강한 결합특성을 갖는 1/4파장 역방향 방향성 결합기의 설계)

  • 홍익표;윤남일;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1004-1010
    • /
    • 2003
  • In this paper, the 1/4 wavelength backward-wave directional coupler using coupled lines with finite metallization thickness is described. A mode-matching method, simple and fast approach to the quasi-static analysis, has been used to analyse this structure. The numerical results show that it is possible to overcome the disadvantages of weakly coupling, low directivity, and narrow strip distance non-realizable in the case of 1/4 wavelength backward-wave directional coupler with zero thickness conductor. It is also revealed that thicker metallization causes longer coupler length in the case of backward-wave symmetrical parallel coupled line directional coupler. The finite metallization thickness can be a new parameter for tight coupling in the design of backward-wave directional couplers, which enables us to design more accurate properties of monolithic microwave integrated circuits.

Development of a New Inchworm Actuation System U sing Piezoelectric Shearing Actuators (전단압전가진기를 이용한 인치웜 가진시스템의 개발)

  • Lee, Sang-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents the development of a new inchworm actuation system using the shearing deformation of the piezoelectric actuators. In this new actuation system, piezoelectric shearing/expanding actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two modes in the new actuation system: (1) stick mode, and (2) clamp mode. In stick mode, the deformation of the piezoelectric shearing actuators drives an inertial mass by means of the friction force at their contact interface. On the other hand, in clamp mode, the piezoelectric expanding actuators provide the gripping force to an inertial mass and, as a result, eliminate its backward motion following the rapid backward deformation of the piezoelectric shearing actuators. To investigate the feasibility of the proposed new actuation system, the experimental system is built up, and the static performance evaluation and dynamic analysis are conducted. The open-loop performance of the linear motion of the proposed new actuation system is evaluated. In dynamic analysis, the mathematical model for the contact interface is established based on the LuGre friction model and the equivalent parameters are identified.