• 제목/요약/키워드: Backpropagation

검색결과 592건 처리시간 0.03초

Improve Digit Recognition Capability of Backpropagation Neural Networks by Enhancing Image Preprocessing Technique

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.4-49
    • /
    • 2001
  • Digit recognition based on backpropagation neural networks, as an important application of pattern recognition, was attracted much attention. Although it has the advantages of parallel calculation, high error-tolerance, and learning capability, better recognition effects can only be achieved with some specific fixed format input of the digit image. Therefore, digit image preprocessing ability directly affects the accuracy of recognition. Here using Matlab software, the digit image was enhanced by resizing and neutral-rotating the extracted digit image, which improved the digit recognition capability of the backpropagation neural network under practical conditions. This method may also be helpful for recognition of other patterns with backpropagation neural networks.

  • PDF

하이브리드 알고리즘을 이용한 신경망의 학습성능 개선 (Improving the Training Performance of Neural Networks by using Hybrid Algorithm)

  • 김원욱;조용현;김영일;강인구
    • 한국정보처리학회논문지
    • /
    • 제4권11호
    • /
    • pp.2769-2779
    • /
    • 1997
  • 본 논문에서는 공액기울기법과 터널링 시스템을 조합사용하여 신경망의 학습성능을 향상시킬 수 있는 효율적인 방법을 제안하였다. 빠른 수렴속도의 학습을 위하여 공액 기울기법에 기초한 후향전파 알고리즘을 사용하였고, 국소최적해를 만났을 때 이를 벗어난 다른 연결가중치의 설정을 위해 동적터널링 시스템에 기초한 후향전파 알고리즘을 조합한 학습 알고리즘을 적용하였다. 제안된 방법을 패리티 검사 및 패턴분류 문제에 각각 적용하여 기존의 기울기 하강법에 기초한 후향전파 알고리즘 및 기울기 하강법과 동적터널링 시스템을 조합한 후향전파 알고리즘방법의 결과와 비교 고찰하여 제안된 방법이 다른 방법들 보다 학습성능에서 우수함을 나타내었다.

  • PDF

Performance Improvement of Backpropagation Algorithm by Automatic Tuning of Learning Rate using Fuzzy Logic System

  • Jung, Kyung-Kwon;Lim, Joong-Kyu;Chung, Sung-Boo;Eom, Ki-Hwan
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.157-162
    • /
    • 2003
  • We propose a learning method for improving the performance of the backpropagation algorithm. The proposed method is using a fuzzy logic system for automatic tuning of the learning rate of each weight. Instead of choosing a fixed learning rate, the fuzzy logic system is used to dynamically adjust the learning rate. The inputs of fuzzy logic system are delta and delta bar, and the output of fuzzy logic system is the learning rate. In order to verify the effectiveness of the proposed method, we performed simulations on the XOR problem, character classification, and function approximation. The results show that the proposed method considerably improves the performance compared to the general backpropagation, the backpropagation with momentum, and the Jacobs'delta-bar-delta algorithm.

후향전파 알고리즘과 동적터널링 시스템을 조합한 다층신경망의 새로운 학습방법 (A new training method of multilayer neural networks using a hybrid of backpropagation algorithm and dynamic tunneling system)

  • 조용현
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.201-208
    • /
    • 1996
  • This paper proposes an efficient method for improving the training performance of the neural network using a hybrid of backpropagation algorithm and dynamic tunneling system.The backpropagation algorithm, which is the fast gradient descent method, is applied for high-speed optimization. The dynamic tunneling system, which is the deterministic method iwth a tunneling phenomenone, is applied for blobal optimization. Converging to the local minima by using the backpropagation algorithm, the approximate initial point for escaping the local minima is estimated by the pattern classification, and the simulation results show that the performance of proposed method is superior th that of backpropagation algorithm with randomized initial point settings.

  • PDF

다중 역전파 신경망을 이용한 차량 번호판의 인식 (Recognition of vehicle number plate using multi backpropagation neural network)

  • 최재호;조범준
    • 한국통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.2432-2438
    • /
    • 1997
  • 본 논문은 CCD 카메라로부터 얻어진 차량 영상에서 번호판 영역이 일정한 패턴의 광강도를 지니는 특징을 이용하여 번호판 영역을 추출학 문자인식을 개선하기 위하여 단일 역전파 신경망 대신 다중 역전파 신경망으로 차량 번호판 인식 시스템을 구현하였다. 본 논문의 실험 결과, 효율적인 문자 영역의 추출이 가능하고, 기존의 단일 역전파 방법보다 학습 시간이 단축되고 인식율이 향상됨을 보인다.

  • PDF

수정된 Activation Function Derivative를 이용한 오류 역전파 알고리즘의 개선 (Improved Error Backpropagation Algorithm using Modified Activation Function Derivative)

  • 권희용;황희영
    • 대한전기학회논문지
    • /
    • 제41권3호
    • /
    • pp.274-280
    • /
    • 1992
  • In this paper, an Improved Error Back Propagation Algorithm is introduced, which avoids Network Paralysis, one of the problems of the Error Backpropagation learning rule. For this purpose, we analyzed the reason for Network Paralysis and modified the Activation Function Derivative of the standard Error Backpropagation Algorithm which is regarded as the cause of the phenomenon. The characteristics of the modified Activation Function Derivative is analyzed. The performance of the modified Error Backpropagation Algorithm is shown to be better than that of the standard Error Back Propagation algorithm by various experiments.

  • PDF

확률적 근사법과 후형질과 알고리즘을 이용한 다층 신경망의 학습성능 개선 (Improving the Training Performance of Multilayer Neural Network by Using Stochastic Approximation and Backpropagation Algorithm)

  • 조용현;최흥문
    • 전자공학회논문지B
    • /
    • 제31B권4호
    • /
    • pp.145-154
    • /
    • 1994
  • This paper proposes an efficient method for improving the training performance of the neural network by using a hybrid of a stochastic approximation and a backpropagation algorithm. The proposed method improves the performance of the training by appliying a global optimization method which is a hybrid of a stochastic approximation and a backpropagation algorithm. The approximate initial point for a stochastic approximation and a backpropagation algorihtm. The approximate initial point for fast global optimization is estimated first by applying the stochastic approximation, and then the backpropagation algorithm, which is the fast gradient descent method, is applied for a high speed global optimization. And further speed-up of training is made possible by adjusting the training parameters of each of the output and the hidden layer adaptively to the standard deviation of the neuron output of each layer. The proposed method has been applied to the parity checking and the pattern classification, and the simulation results show that the performance of the proposed method is superior to that of the backpropagation, the Baba's MROM, and the Sun's method with randomized initial point settings. The results of adaptive adjusting of the training parameters show that the proposed method further improves the convergence speed about 20% in training.

  • PDF

개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 (Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model)

  • 윤여창;조나래;이성덕
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1327-1336
    • /
    • 2017
  • 본 연구에서는 단기 예측을 위한 자기회귀누적이동평균모형, 역전파 신경망 및 유전자 알고리즘의 결합 적용에 대하여 논의하고 이를 통한 유전자-신경망 알고리즘의 효용성을 살펴본다. 일반적으로 역전파 알고리즘은 지역 최소값에 수렴될 수 있는 단점이 있기 때문에, 여기서는 예측 정확도를 높이기 위해 역전파 신경망 구조를 최적화하고 유전자 알고리즘을 결합한 유전자-신경망 알고리즘 기반 예측모형을 구축한다. 실험을 통한 오차 비교는 KOSPI 지수를 이용한다. 결과는 이 연구에서 제안된 유전자-신경망 모형이 역전파 신경망 모형과 비교할 때 예측 정확도에서 어느 정도 유의한 효율성을 보여주고자 한다.

역전파 알고리즘의 성능개선을 위한 학습율 자동 조정 방식 (Auto-Tuning Method of Learning Rate for Performance Improvement of Backpropagation Algorithm)

  • 김주웅;정경권;엄기환
    • 전자공학회논문지CI
    • /
    • 제39권4호
    • /
    • pp.19-27
    • /
    • 2002
  • 역전파 알고리즘의 성능 개선을 위해서 학습율을 자동 조정하는 방식을 제안하였다. 제안한 방식은 각각의 연결강도의 학습율을 퍼지 논리 시스템을 이용하여 자동 조정하는 방식으로 각각의 연결강도에 대해서 ${\Delta}$$\bar{{\Delta}}$를 구하여 퍼지 논리 시스템의 입력으로 사용하고, 학습율을 출력으로 사용하였다. 제안한 방식을 N-패리티 문제, 함수 근사, 숫자 패턴 분류에 대한 시뮬레이션 결과 일반적인 역전파 알고리즘, 모멘텀 방식, Jacobs의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거 (Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems)

  • 석경휴
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF